FURTHER IMPROVEMENTS FOR YOUNG'S INEQUALITIES ON THE ARITHMETIC, GEOMETRIC, AND HARMONIC MEAN

被引:0
作者
Yang, Xiangrun [1 ]
Yang, Changsen [1 ]
Li, Haiying [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 01期
关键词
Young's inequality; Kantorovich constant; arithmetic mean; geometric mean; harmonic mean;
D O I
10.7153/jmi-2024-18-18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain some improvements and generalizations of Young's inequali- ties on the arithmetic, geometric, and harmonic mean. For example,<br /> (1) If 0 < a <b, ss>1 and 0 < v<t<1, then<br /> (a del(v )b)(beta)-(a(#v ),b)(beta)/(a del(vt)b)(beta)-(a(# ),b)(beta )<= v(1-v)/<br /> (aV;b)ss - (a double dagger rb)ss t(1 - t) (2) If 0<b<a, beta > 1 and 0<v<t<, then (a del(v )b)(beta -) - K(h,2)ss o (a#,b)ss/(a del tgb)(ss) - K(h,2)(TM)-T-ss v/ (a double dagger,b)ss t(1 - t) '<br /> (3) If 0< a <b, B1 and 0<vt<1, then<br /> (a del,b)(ss) - (a!,b)B/(aV+b)-(a! b)(a,del tn)-(a,b)ss <=(a del ,b) - (a!,b) t(1-v)<br /> <br /> In addition, we obtain some new results for Young's inequality for operators.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 12 条
  • [1] Young-type inequalities and their matrix analogues
    Alzer, Horst
    da Fonseca, Carlos M.
    Kovacec, Alexander
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03) : 622 - 635
  • [2] [Anonymous], 1970, ANAL INEQUALITIES
  • [3] SOME INEQUALITIES INVOLVING UNITARILY INVARIANT NORMS
    He, Chuanjiang
    Zou, Limin
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 767 - 776
  • [4] Matrix Young inequalities for the Hilbert-Schmidt norm
    Hirzallah, O
    Kittaneh, F
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) : 77 - 84
  • [5] Horn RA, 2012, MATRIX ANAL, DOI [DOI 10.1017/CBO9780511810817, 10.1017/CBO9780511810817]
  • [6] MATRIX INEQUALITIES FOR THE DIFFERENCE BETWEEN ARITHMETIC MEAN AND HARMONIC MEAN
    Liao, Wenshi
    Wu, Junliang
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (03): : 191 - 202
  • [7] NEW VERSIONS OF REVERSE YOUNG AND HEINZ MEAN INEQUALITIES WITH THE KANTOROVICH CONSTANT
    Liao, Wenshi
    Wu, Junliang
    Zhao, Jianguo
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 467 - 479
  • [8] Some results of Young-type inequalities
    Ren, Yonghui
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [9] Convexity and matrix means
    Sababheh, M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 588 - 602
  • [10] ON THE MATRIX HARMONIC MEAN
    Sababheh, Mohammad
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 901 - 920