Monte Carlo simulation of initial and volume ion recombination correction factor in plane parallel ionization chambers exposed to ion beams

被引:1
作者
Orts, Marina [1 ]
Rossomme, Severine [2 ]
Souris, Kevin [2 ]
Sterpin, Edmond [1 ,3 ,4 ]
机构
[1] UCLouvain, Inst Rech Experimentale & Clin, Mol Imaging Radiotherapy & Oncol MIRO, Brussels, Belgium
[2] Ion Beams Applicat SA, Dosimetry Business Unit, Louvain La Neuve, Belgium
[3] Katholieke Univ Leuven, Dept Oncol, Lab Expt Radiotherapy, Leuven, Belgium
[4] Particle Therapy Interuniv Ctr Leuven Particle, Leuven, Belgium
关键词
ion recombination correction factor; ionization chamber; Monte Carlo simulation; COLLECTION; DOSIMETRY;
D O I
10.1088/1361-6560/ad6730
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Accurate reference dosimetry with ionization chambers (ICs) relies on correcting for various influencing factors, including ion recombination. Theoretical frameworks, such as the Boag and Jaffe theories, are conventionally used to describe the ion recombination correction factors. Experimental methods are time consuming, the applicability may be limited and, in some cases, impractical to be used in clinical routine. The development of simulation tools becomes necessary to enhance the understanding of recombination under circumstances that may differ from conventional use. Before progressing, it is crucial to benchmark novel approaches to calculate ion recombination losses under known conditions. In this study, we introduce and validate a versatile simulation tool based on a Monte Carlo scheme for calculating initial and volume ion recombination correction factors in air-filled ICs exposed to ion beams with clinical dose rates. Approach. The simulation includes gaussian distribution of ion positions to model the distribution of charge carriers along the chamber volume. It accounts for various physical transport effects, including drift, diffusion, space charge screening and free electron fraction. To compute ion recombination, a Monte Carlo scheme is used due to its versatility in multiple geometries, without exhibiting convergence problems associated with numerically solved procedures. Main results. The code is validated in conventional dose rates against Jaffe's theory for initial recombination and Boag's theory for volume recombination based on parameters derived from experimental data including proton, helium and carbon ion beams measured with a plane parallel IC. Significance. The simulation demonstrates excellent agreement, typically 0.05% or less relative difference with the theoretical and experimental data. The current code successfully predicts ion recombination correction factors, in a large variety of ion beams, including different temporal beam structures.
引用
收藏
页数:13
相关论文
共 32 条
  • [31] Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber
    Jili Yu
    Jinjie Wu
    Zhenyu Liao
    Zhenjie Zhou
    Journal of the Korean Physical Society, 2018, 73 : 1466 - 1472
  • [32] Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber
    Yu Jili
    Wu Jinjie
    Liao Zhenyu
    Zhou Zhenjie
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (10) : 1466 - 1472