On 2-arc-transitive bi-Cayley graphs of finite simple groups

被引:0
作者
Li, Jing Jian [1 ]
Wang, Yu [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; 2-Arc-transitive; Finite simple group; TRANSITIVE GRAPHS;
D O I
10.1016/j.disc.2024.113972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma is a bi-Cayley graphover a group Hif H <= Aut(Gamma) acts faithfully and regularly on each part of Gamma. In this paper, a complete classification is given of bi-quasiprimitive 2-arc-transitive bi-Cayley graphs Gamma over a finite simple group Gsuch that Gis non-normal in Aut(Gamma). (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Semisymmetric cubic graphs constructed from bi-Cayley graphs of An [J].
Lu, Zaiping ;
Wang, Changqun ;
Xu, Mingyao .
ARS COMBINATORIA, 2006, 80 :177-187
[32]   Perfect state transfer on weighted bi-Cayley graphs over abelian groups [J].
Wang, Shixin ;
Feng, Tao .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 451
[33]   ON EDGE-HAMILTONIAN PROPERTY OF BI-CAYLEY GRAPHS [J].
Yingbin Ma ;
Haifeng Li .
AnnalsofAppliedMathematics, 2015, 31 (04) :423-428
[34]   Locally primitive Cayley graphs of finite simple groups [J].
王杰 ;
方新贵 ;
C.E.Praeger .
Science China Mathematics, 2001, (01) :58-66
[35]   Locally primitive Cayley graphs of finite simple groups [J].
Xingui Fang ;
C. E. Praeger ;
Jie Wang .
Science in China Series A: Mathematics, 2001, 44 :58-66
[36]   On locally primitive Cayley graphs of finite simple groups [J].
Fang, Xingui ;
Ma, Xuesong ;
Wang, Jie .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1039-1051
[37]   Locally primitive Cayley graphs of finite simple groups [J].
Fang, XG ;
Praeger, CE ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (01) :58-66
[38]   A note on the automorphism groups of cubic Cayley graphs of finite simple groups [J].
Zhang, Cui ;
Fang, Xin Gui .
DISCRETE MATHEMATICS, 2010, 310 (21) :3030-3032
[39]   On the unitary one matching Bi-Cayley graph over finite rings [J].
Shahini, Fatemeh ;
Khashyarmanesh, Kazem .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (02)
[40]   Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups [J].
Li, Cai Heng ;
Xia, Binzhou .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 279 (1375) :1-+