On 2-arc-transitive bi-Cayley graphs of finite simple groups

被引:0
作者
Li, Jing Jian [1 ]
Wang, Yu [1 ]
Zhou, Jin-Xin [2 ]
机构
[1] Guangxi Univ, Ctr Appl Math Guangxi, Sch Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Cayley graph; 2-Arc-transitive; Finite simple group; TRANSITIVE GRAPHS;
D O I
10.1016/j.disc.2024.113972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A bipartite graph Gamma is a bi-Cayley graphover a group Hif H <= Aut(Gamma) acts faithfully and regularly on each part of Gamma. In this paper, a complete classification is given of bi-quasiprimitive 2-arc-transitive bi-Cayley graphs Gamma over a finite simple group Gsuch that Gis non-normal in Aut(Gamma). (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups [J].
Qin, Yan-Li ;
Zhou, Jin-Xin .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) :1973-1984
[22]   On edge-primitive 2-arc-transitive graphs [J].
Lu, Zai Ping .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
[23]   FINITE 2-GEODESIC-TRANSITIVE CAYLEY GRAPHS OF DIHEDRAL GROUPS [J].
Jin, Wei ;
Ma, Jicheng .
ARS COMBINATORIA, 2018, 137 :403-417
[24]   Perfect state transfer on bi-Cayley graphs over abelian groups [J].
Wang, Shixin ;
Feng, Tao .
DISCRETE MATHEMATICS, 2023, 346 (06)
[25]   One-matching bi-Cayley graphs over abelian groups [J].
Kovacs, Istvan ;
Malnic, Aleksander ;
Marusic, Dragan ;
Miklavic, Stefko .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) :602-616
[26]   Cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular p-group [J].
Zhou, Jin-Xin ;
Feng, Yan-Quan .
ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03)
[27]   The Diameters of Almost All Bi-Cayley Graphs [J].
Deng, Xingchao ;
Meng, Jixiang .
ARS COMBINATORIA, 2013, 111 :65-74
[28]   On isomorphisms of small order bi-Cayley graphs [J].
Jin, Wei ;
Liu, Wei Jun .
UTILITAS MATHEMATICA, 2013, 92 :317-327
[29]   A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group [J].
Cao, Jianji ;
Kwon, Young Soo ;
Zhang, Mimi .
ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04) :1-13
[30]   Semisymmetric cubic graphs constructed from bi-Cayley graphs of An [J].
Lu, Zaiping ;
Wang, Changqun ;
Xu, Mingyao .
ARS COMBINATORIA, 2006, 80 :177-187