Hierarchical joint analysis of marginal summary statistics-Part II: High-dimensional instrumental analysis of omics data

被引:0
作者
Jiang, Lai [1 ]
Shen, Jiayi [1 ]
Darst, Burcu F. [2 ,3 ]
Haiman, Christopher A. [2 ,4 ]
Mancuso, Nicholas [1 ,2 ,4 ]
Conti, David V. [1 ,2 ,4 ,5 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Dept Populat & Publ Hlth Sci, Div Biostat, Los Angeles, CA USA
[2] Univ Southern Calif, Ctr Genet Epidemiol, Keck Sch Med, Los Angeles, CA USA
[3] Fred Hutchinson Canc Ctr, Publ Hlth Sci, Seattle, WA USA
[4] Univ Southern Calif, Norris Comprehens Canc Ctr, Los Angeles, CA USA
[5] Univ Southern Calif, Keck Sch Med, Dept Populat & Publ Hlth Sci, Div Biostat, Los Angeles, CA 90032 USA
关键词
hierarchical joint analysis of marginal summary data (hJAM); instrumental variable analysis; Mendelian randomization; omics data; summary statistics; transcriptome-wide association study (TWAS); PROSTATE-CANCER RISK; MENDELIAN RANDOMIZATION ANALYSIS; TRANSCRIPTOME-WIDE ASSOCIATION; POST-SELECTION INFERENCE; GENETIC-VARIANTS; FATTY-ACIDS; STATIN USE; SUSCEPTIBILITY; METAANALYSIS; CHOLESTEROL;
D O I
10.1002/gepi.22577
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Instrumental variable (IV) analysis has been widely applied in epidemiology to infer causal relationships using observational data. Genetic variants can also be viewed as valid IVs in Mendelian randomization and transcriptome-wide association studies. However, most multivariate IV approaches cannot scale to high-throughput experimental data. Here, we leverage the flexibility of our previous work, a hierarchical model that jointly analyzes marginal summary statistics (hJAM), to a scalable framework (SHA-JAM) that can be applied to a large number of intermediates and a large number of correlated genetic variants-situations often encountered in modern experiments leveraging omic technologies. SHA-JAM aims to estimate the conditional effect for high-dimensional risk factors on an outcome by incorporating estimates from association analyses of single-nucleotide polymorphism (SNP)-intermediate or SNP-gene expression as prior information in a hierarchical model. Results from extensive simulation studies demonstrate that SHA-JAM yields a higher area under the receiver operating characteristics curve (AUC), a lower mean-squared error of the estimates, and a much faster computation speed, compared to an existing approach for similar analyses. In two applied examples for prostate cancer, we investigated metabolite and transcriptome associations, respectively, using summary statistics from a GWAS for prostate cancer with more than 140,000 men and high dimensional publicly available summary data for metabolites and transcriptomes.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 82 条
  • [1] Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study
    Adams, Charleen D.
    Richmond, Rebecca
    Ferreira, Diana L. Santos
    Spiller, Wes
    Tan, Vanessa
    Zheng, Jie
    Wurtz, Peter
    Donovan, Jenny
    Hamdy, Freddie
    Neal, David
    Lane, J. Athene
    Smith, George Davey
    Relton, Caroline
    Eeles, Rosalind A.
    Haiman, Christopher A.
    Kote-Jarai, ZSofia
    Schumacher, Fredrick R.
    Al Olama, Ali Amin
    Benlloch, Sara
    Muir, Kenneth
    Berndt, Sonja I.
    Conti, David V.
    Wiklund, Fredrik
    Chanock, Stephen J.
    Gapstur, Susan
    Stevens, Victoria L.
    Tangen, Catherine M.
    Batra, Jyotsna
    Clements, Judith A.
    Gronberg, Henrik
    Pashayan, Nora
    Schleutker, Johanna
    Albanes, Demetrius
    Wolk, Alicja
    West, Catharine M. L.
    Mucci, Lorelei A.
    Cancel-Tassin, Geraldine
    Koutros, Stella
    Sorensen, Karina Dalsgaard
    Maehle, Lovise
    Travis, Ruth C.
    Hamilton, Robert J.
    Ingles, Sue Ann
    Rosenstein, Barry S.
    Lu, Yong-Jie
    Giles, Graham G.
    Kibel, Adam S.
    Vega, Ana
    Kogevinas, Manolis
    Penney, Kathryn L.
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2019, 28 (01) : 208 - 216
  • [2] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [3] Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1
  • [4] Association between EHBP1 rs721048(A>G) polymorphism and prostate cancer susceptibility: a meta-analysis of 17 studies involving 150,678 subjects
    Ao, Xiang
    Liu, Ying
    Bai, Xiao-Yan
    Qu, Xinjian
    Xu, Zhaowei
    Hu, Gaolei
    Chen, Min
    Wu, Huijian
    [J]. ONCOTARGETS AND THERAPY, 2015, 8 : 1671 - 1680
  • [5] Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories
    Arthur, Rhonda
    Moller, Henrik
    Garmo, Hans
    Holmberg, Lars
    Stattin, Par
    Malmstrom, Hakan
    Lambe, Mats
    Hammar, Niklas
    Walldius, Goran
    Robinson, David
    Jungner, Ingmar
    Van Hemelrijck, Mieke
    [J]. CANCER MEDICINE, 2016, 5 (06): : 1307 - 1318
  • [6] Statin Use and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies
    Bansal, Dipika
    Undela, Krishna
    D'Cruz, Sanjay
    Schifano, Fabrizio
    [J]. PLOS ONE, 2012, 7 (10):
  • [7] Transcriptome-wide association studies accounting for colocalization using Egger regression
    Barfield, Richard
    Feng, Helian
    Gusev, Alexander
    Wu, Lang
    Zheng, Wei
    Pasaniuc, Bogdan
    Kraft, Peter
    [J]. GENETIC EPIDEMIOLOGY, 2018, 42 (05) : 418 - 433
  • [8] A framework for transcriptome-wide association studies in breast cancer in diverse study populations
    Bhattacharya, Arjun
    Garcia-Closas, Montserrat
    Olshan, Andrew F.
    Perou, Charles M.
    Troester, Melissa A.
    Love, Michael I.
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [9] Statin use and prostate cancer risk in a large population-based setting
    Boudreau, Denise M.
    Yu, Onchee
    Buist, Diana S. M.
    Miglioretti, Diana L.
    [J]. CANCER CAUSES & CONTROL, 2008, 19 (07) : 767 - 774
  • [10] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525