Existence and uniqueness of solution to unsteady Darcy-Brinkman problem with Korteweg stress for modelling miscible porous media flow

被引:1
|
作者
Kundu, Sahil [1 ]
Maharana, Surya Narayan [1 ]
Mishra, Manoranjan [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Math, Rupnagar, India
关键词
Darcy-Brinkman; Korteweg stress; Miscible flow; Reactive flow; Precipitation; Well-posedness; Existence; Uniqueness; STOKES/DARCY MODEL; CELL-MIGRATION; PHYSICAL CUES; NAVIER-STOKES; TUMOR-GROWTH; FLUID-FLOW; EQUATIONS; HOMOGENIZATION; APPROXIMATION; CONVECTION;
D O I
10.1016/j.jmaa.2024.128532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work investigates a model that combines a convection-diffusion-reaction equation for solute concentration with an unsteady Darcy-Brinkman equation for the flow field, including the Korteweg stress. Additionally, the flow field experiences an external body force term while the permeability fluctuates with solute concentration. Such models are used to describe flows in porous mediums such as fractured karst reservoirs, mineral wool, industrial foam, coastal mud, etc. The system of equations has Neumann boundary conditions for the solute concentration and no-flow conditions for the velocity field, and the well-posedness of the model is discussed for a wide range of initial data. The proofing techniques remain applicable in establishing the well-posedness of non -reactive and homogeneous porous media flows under the specified simplifications. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:20
相关论文
共 24 条
  • [1] Existence results for a monophasic compressible Darcy-Brinkman's flow in porous media
    El Dine, Houssein Nasser
    Saad, Mazen
    Talhouk, Raafat
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (01) : 125 - 147
  • [2] Unsteady Fluid Flow in a Darcy-Brinkman Porous Medium with Slip Effect and Porous Dissipation
    Rahman, Muhammad
    Waheed, Humma
    Turkyilmazoglu, Mustafa
    Salman Siddiqui, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (09):
  • [3] A multiscale Darcy-Brinkman model for fluid flow in fractured porous media
    Lesinigo, Matteo
    D'Angelo, Carlo
    Quarteroni, Alfio
    NUMERISCHE MATHEMATIK, 2011, 117 (04) : 717 - 752
  • [4] A Darcy-Brinkman model of flow in double porous media - Two-level homogenization and computational modelling
    Rohan, Eduard
    Turjanicova, Jana
    Lukes, Vladimir
    COMPUTERS & STRUCTURES, 2018, 207 : 95 - 110
  • [5] Propagation of Pore Pressure and Stress in Saturated Porous Media Based on a Darcy-Brinkman Formulation
    Yang, Duoxing
    Zhang, Lianzhong
    GEOFLUIDS, 2021, 2021
  • [6] Dual reciprocity boundary element method solution of natural convection in Darcy-Brinkman porous media
    Sarler, B
    Perko, J
    Gobin, D
    Goyeau, B
    Power, H
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (01) : 23 - 41
  • [7] Existence results for a monophasic compressible Darcy–Brinkman’s flow in porous media
    Houssein Nasser El Dine
    Mazen Saad
    Raafat Talhouk
    Journal of Elliptic and Parabolic Equations, 2019, 5 : 125 - 147
  • [8] A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media
    Shao, Qian
    Fahs, Marwan
    Younes, Anis
    Makradi, Ahmed
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2016, 69 (01) : 26 - 47
  • [9] Uniqueness of solution of the unsteady filtration problem in heterogeneous porous media
    A. Lyaghfouri
    E. Zaouche
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 89 - 102
  • [10] Uniqueness of solution of the unsteady filtration problem in heterogeneous porous media
    Lyaghfouri, A.
    Zaouche, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) : 89 - 102