Delta-points and their implications for the geometry of Banach spaces

被引:1
作者
Abrahamsen, Trond A. [1 ]
Aliaga, Ramon J. [2 ]
Lima, Vegard [1 ]
Martiny, Andre [1 ]
Perreau, Yoel [3 ]
Prochazka, Antonin [4 ]
Veeorg, Triinu [3 ]
机构
[1] Univ Agder, Dept Math, Postboks 422, N-4604 Kristiansand, Norway
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia, Spain
[3] Univ Tartu, Inst Math & Stat, Narva Mnt 18, Tartu Linn, Estonia
[4] Univ Franche Comte, CNRS, LmB UMR 6623, Besancon, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2024年 / 109卷 / 05期
关键词
PROPERTY;
D O I
10.1112/jlms.12913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Lipschitz-free space with the Radon-Nikod & yacute;m property and a Daugavet point recently constructed by Veeorg is in fact a dual space isomorphic to & ell;(1). Furthermore, we answer an open problem from the literature by showing that there exists a superreflexive space, in the form of a renorming of & ell;(2), with a Delta-point. Building on these two results, we are able to renorm every infinite-dimensional Banach space to have a Delta-point. Next, we establish powerful relations between existence of Delta-points in Banach spaces and their duals. As an application, we obtain sharp results about the influence of Delta-points for the asymptotic geometry of Banach spaces. In addition, we prove that if X is a Banach space with a shrinking k-unconditional basis with k < 2, or if X is a Hahn-Banach smooth space with a dual satisfying the Kadets-Klee property, then X and its dual X* fail to contain Delta-points. In particular, we get that no Lipschitz-free space with a Hahn-Banach smooth predual contains Delta-points. Finally, we present a purely metric characterization of the molecules in Lipschitz-free spaces that are Delta-points, and we solve an open problem about representation of finitely supported Delta-points in Lipschitz-free spaces.
引用
收藏
页数:38
相关论文
共 42 条
  • [1] Delta- and Daugavet points in Banach spaces
    Abrahamsen, T. A.
    Haller, R.
    Lima, V
    Pirk, K.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) : 475 - 496
  • [2] Abrahamsen T. A., 2021, Trans. Amer. Math. Soc. Ser. B, V8, P379
  • [3] Delta-points in Banach spaces generated by adequate families
    Abrahamsen, Trond A.
    Lima, Vegard
    Martiny, Andre
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (03) : 421 - 434
  • [4] Asymptotic geometry and Delta-points
    Abrahamsen, Trond A.
    Lima, Vegard
    Martiny, Andre
    Perreau, Yoel
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [5] Almost square Banach spaces
    Abrahamsen, Trond A.
    Langemets, Johann
    Lima, Vegard
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1549 - 1565
  • [6] Albiac F, 2016, GRAD TEXTS MATH, V233, P1, DOI 10.1007/978-3-319-31557-7
  • [7] LIPSCHITZ FREE SPACES ISOMORPHIC TO THEIR INFINITE SUMS AND GEOMETRIC APPLICATIONS
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) : 7281 - 7312
  • [8] Aliaga RJ, 2024, Arxiv, DOI arXiv:2302.13951
  • [9] PURELY 1-UNRECTIFIABLE METRIC SPACES AND LOCALLY FLAT LIPSCHITZ FUNCTIONS
    Aliaga, Ramon J.
    Gartland, Chris
    Petitjean, Colin
    Prochazka, Antonin
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) : 3529 - 3567
  • [10] Compact reduction in Lipschitz-free spaces
    Aliaga, Ramon J.
    Nous, Camille
    Petitjean, Colin
    Prochazka, Antonin
    [J]. STUDIA MATHEMATICA, 2021, 260 (03) : 341 - 359