On the Diophantine Equations qx + p(2q + 1)y = z2 and qx

被引:0
作者
Phosri, Piyada [1 ]
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Fac Sci & Technol, Dept Math, Lopburi 15000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2024年 / 22卷 / 02期
关键词
Diophantine equation; Legendre symbol; congruence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using basic concepts of number theory, we present some conditions of the non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations q(x) + p(2q + 1)(y) = z(2) and q(x) + p (4q + 1)(y) = z(2), where p and q are prime numbers.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 20 条
  • [11] Redmond D., 1996, Number Theory: An Introduction
  • [12] Sangam B.R, 2020, Ann. Pure Appl. Math., V22, P7
  • [13] Sroysang B., 2014, Int. J. Pure Appl. Math, V92, P109
  • [14] Sroysang B., 2014, Int. J. Pure Appl. Math., V91, P537
  • [15] Tadee S, 2023, Ann. Pure Appl. Math., V27, P19
  • [16] Tadee S., 2022, Ann. Pure Appl. Math., V26, P125
  • [17] Non-existence of Positive Integer Solutions of the Diophantine Equation px
    Tadee, Suton
    Siraworakun, Apirat
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 724 - 735
  • [18] Tangjai W, 2022, INT J MATH COMPUT SC, V17, P1483
  • [19] Thongnak S, 2021, Ann. Pure Appl. Math., V23, P111
  • [20] Thongnak S, 2022, Ann. Pure Appl. Math., V25, P51