On the Diophantine Equations qx + p(2q + 1)y = z2 and qx

被引:0
作者
Phosri, Piyada [1 ]
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Fac Sci & Technol, Dept Math, Lopburi 15000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2024年 / 22卷 / 02期
关键词
Diophantine equation; Legendre symbol; congruence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using basic concepts of number theory, we present some conditions of the non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations q(x) + p(2q + 1)(y) = z(2) and q(x) + p (4q + 1)(y) = z(2), where p and q are prime numbers.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 20 条
  • [1] Aggarwal S, 2020, Open J. Math. Sci., V4, P397
  • [2] Alabbood MA, 2022, INT J MATH COMPUT SC, V17, P431
  • [3] Burshtein N., 2019, Ann. Pure Appl. Math., V20, P75
  • [4] Dokchan R., 2020, Tatra Mt. Math. Publ., V77, P39
  • [5] Dokchan R, 2021, INT J MATH COMPUT SC, V16, P179
  • [6] Gupta S., 2018, Ann. Pure Appl. Math., V18, P125
  • [7] Kumar S.U., 2019, International Journal of Biotechnology and Knowledge Development (IJSKD), V11, P1
  • [8] Laipaporn K., 2019, Walailak J. Sci. Tech., V16, P647
  • [9] Mina R. J. S., 2019, Mathematics and Statistics, V7, P78
  • [10] Porto A, 2023, Ann. Pure Appl. Math., V28, P13