Stellar Classification with Vision Transformer and SDSS Photometric Images

被引:2
作者
Yang, Yi [1 ,2 ]
Li, Xin [1 ]
机构
[1] Beijing Acad Sci & Technol, Beijing Planetarium, Beijing 100044, Peoples R China
[2] Chinese Acad Sci, Inst Zool, Key Lab Zool Systemat & Evolut, 1 Beichen West Rd, Beijing 100101, Peoples R China
基金
美国国家科学基金会;
关键词
deep learning; vision transformer; stellar classification; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.3390/universe10050214
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the development of large-scale sky surveys, an increasing number of stellar photometric images have been obtained. However, most stars lack spectroscopic data, which hinders stellar classification. Vision Transformer (ViT) has shown superior performance in image classification tasks compared to most convolutional neural networks (CNNs). In this study, we propose an stellar classification network based on the Transformer architecture, named stellar-ViT, aiming to efficiently and accurately classify the spectral class for stars when provided with photometric images. By utilizing RGB images synthesized from photometric data provided by the Sloan Digital Sky Survey (SDSS), our model can distinguish the seven main stellar categories: O, B, A, F, G, K, and M. Particularly, our stellar-ViT-gri model, which reaches an accuracy of 0.839, outperforms traditional CNNs and the current state-of-the-art stellar classification network SCNet when processing RGB images synthesized from the gri bands. Furthermore, with the introduction of urz band data, the overall accuracy of the stellar-ViT model reaches 0.863, further demonstrating the importance of additional band information in improving classification performance. Our approach showcases the effectiveness and feasibility of using photometric images and Transformers for stellar classification through simple data augmentation strategies and robustness analysis of training dataset sizes. The stellar-ViT model maintains good performance even in small sample scenarios, and the inclusion of urz band data reduces the likelihood of misclassifying samples as lower-temperature subtypes.
引用
收藏
页数:15
相关论文
共 35 条
[1]   The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data [J].
Abdurro'uf ;
Accetta, Katherine ;
Aerts, Conny ;
Aguirre, Victor Silva ;
Ahumada, Romina ;
Ajgaonkar, Nikhil ;
Ak, N. Filiz ;
Alam, Shadab ;
Prieto, Carlos Allende ;
Almeida, Andres ;
Anders, Friedrich ;
Anderson, Scott F. ;
Andrews, Brett H. ;
Anguiano, Borja ;
Aquino-Ortiz, Erik ;
Aragon-Salamanca, Alfonso ;
Argudo-Fernandez, Maria ;
Ata, Metin ;
Aubert, Marie ;
Avila-Reese, Vladimir ;
Badenes, Carles ;
Barba, Rodolfo H. ;
Barger, Kat ;
Barrera-Ballesteros, Jorge K. ;
Beaton, Rachael L. ;
Beers, Timothy C. ;
Belfiore, Francesco ;
Bender, Chad F. ;
Bernardi, Mariangela ;
Bershady, Matthew A. ;
Beutler, Florian ;
Bidin, Christian Moni ;
Bird, Jonathan C. ;
Bizyaev, Dmitry ;
Blanc, Guillermo A. ;
Blanton, Michael R. ;
Boardman, Nicholas Fraser ;
Bolton, Adam S. ;
Boquien, Mederic ;
Borissova, Jura ;
Bovy, Jo ;
Brandt, W. N. ;
Brown, Jordan ;
Brownstein, Joel R. ;
Brusa, Marcella ;
Buchner, Johannes ;
Bundy, Kevin ;
Burchett, Joseph N. ;
Bureau, Martin ;
Burgasser, Adam .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 259 (02)
[2]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[3]   KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION [J].
Brown, Timothy M. ;
Latham, David W. ;
Everett, Mark E. ;
Esquerdo, Gilbert A. .
ASTRONOMICAL JOURNAL, 2011, 142 (04)
[4]   Galaxy morphology classification based on Convolutional vision Transformer (CvT) [J].
Cao, Jie ;
Xu, Tingting ;
Deng, Yuhe ;
Deng, Linhua ;
Yang, Mingcun ;
Liu, Zhijing ;
Zhou, Weihong .
ASTRONOMY & ASTROPHYSICS, 2024, 683
[5]   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [J].
Chen, Chun-Fu ;
Fan, Quanfu ;
Panda, Rameswar .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :347-356
[6]   Photometric redshift estimation via deep learning Generalized and pre-classification-less, image based, fully probabilistic redshifts [J].
D'Isanto, A. ;
Polsterer, K. L. .
ASTRONOMY & ASTROPHYSICS, 2018, 609
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459
[9]   ASTROMER A transformer-based embedding for the representation of light curves [J].
Donoso-Oliva, C. ;
Becker, I. ;
Protopapas, P. ;
Cabrera-Vives, G. ;
Vishnu, M. ;
Vardhan, H. .
ASTRONOMY & ASTROPHYSICS, 2023, 670
[10]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929