Prediction of antimicrobial resistance in Klebsiella pneumoniae using genomic and metagenomic next-generation sequencing data

被引:7
作者
Zhou, Xun [1 ,2 ]
Yang, Ming [3 ]
Chen, Fangyuan [4 ]
Wang, Leilei [1 ,2 ]
Han, Peng [4 ]
Jiang, Zhi [4 ]
Shen, Siquan [1 ,2 ]
Rao, Guanhua [4 ]
Yang, Fan [1 ,2 ]
机构
[1] Fudan Univ, Huashan Hosp, Inst Antibiot, Shanghai, Peoples R China
[2] Minist Hlth, Key Lab Clin Pharmacol Antibiot, Shanghai, Peoples R China
[3] Air Force Mil Med Univ, Affiliated Hosp 2, Xian, Peoples R China
[4] Genskey Med Technol Co Ltd, Beijing, Peoples R China
关键词
GRAM-NEGATIVE ORGANISMS; ESCHERICHIA-COLI; SUSCEPTIBILITY; INFECTIONS; SMART; SPAIN;
D O I
10.1093/jac/dkae248
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives Klebsiella pneumoniae is a significant pathogen with increasing resistance and high mortality rates. Conventional antibiotic susceptibility testing methods are time-consuming. Next-generation sequencing has shown promise for predicting antimicrobial resistance (AMR). This study aims to develop prediction models using whole-genome sequencing data and assess their feasibility with metagenomic next-generation sequencing data from clinical samples.Methods On the basis of 4170 K. pneumoniae genomes, the main genetic characteristics associated with AMR were identified using a LASSO regression model. Consequently, the prediction model was established, validated and optimized using clinical isolate read simulation sequences. To evaluate the efficacy of the model, clinical specimens were collected.Results Four predictive models for amikacin, ciprofloxacin, levofloxacin and piperacillin/tazobactam, initially had positive predictive values (PPVs) of 90%, 85%, 84% and 94%, respectively, when they were originally constructed. When applied to clinical specimens, their PPVs increased to 96%, 96%, 95% and 100%, respectively. Meanwhile, there were negative predictive values (NPVs) of 100% for ciprofloxacin and levofloxacin, and 'not applicable' (NA) for amikacin and piperacillin/tazobactam. Our method achieved antibacterial phenotype classification accuracy rates of 96.08% for amikacin, 96.15% for ciprofloxacin, 95.31% for levofloxacin and 100% for piperacillin/tazobactam. The sequence-based prediction antibiotic susceptibility testing (AST) reported results in an average time of 19.5 h, compared with the 67.9 h needed for culture-based AST, resulting in a significant reduction of 48.4 h.Conclusions These preliminary results demonstrated that the performance of prediction model for a clinically significant antimicrobial-species pair was comparable to that of phenotypic methods, thereby encouraging the expansion of sequence-based susceptibility prediction and its clinical validation and application.
引用
收藏
页码:2509 / 2517
页数:9
相关论文
共 37 条
[1]   CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database [J].
Alcock, Brian P. ;
Huynh, William ;
Chalil, Romeo ;
Smith, Keaton W. ;
Raphenya, Amogelang R. ;
Wlodarski, Mateusz A. ;
Edalatmand, Arman ;
Petkau, Aaron ;
Syed, Sohaib A. ;
Tsang, Kara K. ;
Baker, Sheridan J. C. ;
Dave, Mugdha ;
McCarthy, Madeline C. ;
Mukiri, Karyn M. ;
Nasir, Jalees A. ;
Golbon, Bahar ;
Imtiaz, Hamna ;
Jiang, Xingjian ;
Kaur, Komal ;
Kwong, Megan ;
Liang, Zi Cheng ;
Niu, Keyu C. ;
Shan, Prabakar ;
Yang, Jasmine Y. J. ;
Gray, Kristen L. ;
Hoad, Gemma R. ;
Jia, Baofeng ;
Bhando, Timsy ;
Carfrae, Lindsey A. ;
Farha, Maya A. ;
French, Shawn ;
Gordzevich, Rodion ;
Rachwalski, Kenneth ;
Tu, Megan M. ;
Bordeleau, Emily ;
Dooley, Damion ;
Griffiths, Emma ;
Zubyk, Haley L. ;
Brown, Eric D. ;
Maguire, Finlay ;
Beiko, Robert G. ;
Hsiao, William W. L. ;
Brinkman, Fiona S. L. ;
Van Domselaar, Gary ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D690-D699
[2]   AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae [J].
Avershina, Ekaterina ;
Sharma, Priyanka ;
Taxt, Arne M. ;
Singh, Harpreet ;
Frye, Stephan A. ;
Paul, Kolin ;
Kapil, Arti ;
Naseer, Umaer ;
Kaur, Punit ;
Ahmad, Rafi .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 (19) :1896-1906
[3]   KPC-Producing Klebsiella pneumoniae Strains That Harbor AAC(6′)-Ib Exhibit Intermediate Resistance to Amikacin [J].
Bremmer, Derek N. ;
Clancy, Cornelius J. ;
Press, Ellen G. ;
Almaghrabi, Reem ;
Chen, Liang ;
Doi, Yohei ;
Hong Nguyen ;
Shields, Ryan K. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (12) :7597-7600
[4]   Genomic Features Associated with the Degree of Phenotypic Resistance to Carbapenems in Carbapenem-Resistant Klebsiella pneumoniae [J].
Bulman, Zackery P. ;
Krapp, Fiorella ;
Pincus, Nathan B. ;
Wenzler, Eric ;
Murphy, Katherine R. ;
Qi, Chao ;
Ozer, Egon A. ;
Hauser, Alan R. .
MSYSTEMS, 2021, 6 (05)
[5]  
Cantón R, 2019, REV ESP QUIM, V32, P145
[6]  
Cantón R, 2011, REV ESP QUIM, V24, P223
[7]   Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes an other resistance mechanisms [J].
Castanheira, Mariana ;
Deshpande, Lalitagauri M. ;
Woosley, Leah N. ;
Serio, Alisa W. ;
Krause, Kevin M. ;
Flamm, Robert K. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2018, 73 (12) :3346-3354
[8]   Efficacy of β-Lactam/β-Lactamase Inhibitor Combinations for the Treatment of Bloodstream Infection Due to Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae in Hematological Patients with Neutropenia [J].
Gudiol, Carlota ;
Royo-Cebrecos, Cristina ;
Abdala, Edson ;
Akova, Murat ;
Alvarez, Rocio ;
Maestro-de la Calle, Guillermo ;
Cano, Angela ;
Cervera, Carlos ;
Clemente, Wanessa T. ;
Martin-Davila, Pilar ;
Freifeld, Alison ;
Gomez, Lucia ;
Gottlieb, Thomas ;
Gurgui, Merce ;
Herrera, Fabian ;
Manzur, Adriana ;
Maschmeyer, Georg ;
Meije, Yolanda ;
Montejo, Miguel ;
Peghin, Maddalena ;
Rodriguez-Bano, Jesus ;
Ruiz-Camps, Isabel ;
Sukiennik, Teresa C. ;
Tebe, Cristian ;
Carratala, Jordi .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (08)
[9]   Current Status and Trends of Antibacterial Resistance in China [J].
Hu, Fupin ;
Zhu, Demei ;
Wang, Fu ;
Wang, Minggui .
CLINICAL INFECTIOUS DISEASES, 2018, 67 :S128-S134
[10]   Novel Clinical mNGS-Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of Acinetobacter baumannii [J].
Hu, Xuejiao ;
Zhao, Yunhu ;
Han, Peng ;
Liu, Suling ;
Liu, Weijiang ;
Mai, Cong ;
Deng, Qianyun ;
Ren, Jing ;
Luo, Jiajie ;
Chen, Fangyuan ;
Jia, Xuefeng ;
Zhang, Jing ;
Rao, Guanhua ;
Gu, Bing .
JOURNAL OF CLINICAL MICROBIOLOGY, 2023, 61 (05)