Using artificial intelligence to classify point-of-care ultrasound images

被引:0
作者
Anderson, Owen [1 ]
Reagan, Garrett [1 ]
Hugenberg, Nicholas [1 ]
Mandale, Deepa [2 ]
Wen, Songnan [2 ]
Naqvi, Tasneem [2 ]
Adusei, Shaheeda [1 ]
Holmes, David, III [1 ]
机构
[1] Mayo Clin, Biomed Imaging Resource, Rochester, MN 55905 USA
[2] Mayo Clin, Cardiovasc Dis, Rochester, MN 55905 USA
来源
IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, MEDICAL IMAGING 2024 | 2024年 / 12928卷
关键词
Artificial Intelligence; Point of Care Ultrasound; Quality Assessment; Echocardiogram; Computer Vison;
D O I
10.1117/12.3009191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern point of care ultrasound (POCUS) devices can perform echocardiograms from a smartphone, greatly improving accessibility. However, operator expertise is still required to gather high quality data which is needed to accurately view and diagnose patients. The goal of this study is to enhance the collection of mobile ultrasound echocardiograms with AI machine learning. AI can provide feedback to a POCUS operator to help maximize clinical usability of data. To realize this, we used the Intel GETi framework to create computer vision models that quantify the readability of frames taken from an echocardiogram. These models determine the quality and the orientation of each frame. Feedback from these models can alert the user to proper positioning and technique to gather usable ultrasound data. Tests on existing data show the accuracy of the models ranging from 77%-99%. As the GETi framework develops further, it has the potential to perform these tests in real time from a mobile device.
引用
收藏
页数:6
相关论文
共 13 条
[1]   Artificial Intelligence (AI)-Empowered Echocardiography Interpretation: A State-of-the-Art Review [J].
Akkus, Zeynettin ;
Aly, Yousof H. ;
Attia, Itzhak Z. ;
Lopez-Jimenez, Francisco ;
Arruda-Olson, Adelaide M. ;
Pellikka, Patricia A. ;
Pislaru, Sorin, V ;
Kane, Garvan C. ;
Friedman, Paul A. ;
Oh, Jae K. .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (07)
[2]  
[Anonymous], Philips Lumify S4-1 Phased Array Transducer
[3]  
[Anonymous], Develop Computer Vision Al Quickly and Easily with the Intel® Geti™ Platform
[4]  
Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
[5]   DIY AI, deep learning network development for automated image classification in a point-of-care ultrasound quality assurance program [J].
Blaivas, Michael ;
Arntfield, Robert ;
White, Matthew .
JOURNAL OF THE AMERICAN COLLEGE OF EMERGENCY PHYSICIANS OPEN, 2020, 1 (02) :124-131
[6]   Development and Validation of a Point-of-Care-Ultrasound Image Quality Assessment Tool The POCUS IQ Scale [J].
Dessie, Almaz S. ;
Calhoun, Aaron W. ;
Kanjanauptom, Panida ;
Gilbert, Gregory E. ;
Ekpenyong, Atim ;
Lewiss, Resa E. ;
Rabiner, Joni E. ;
Tsze, Daniel S. ;
Kessler, David O. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (01) :135-145
[7]   Point-of-Care Ultrasonography [J].
Diaz-Gomez, Jose L. ;
Mayo, Paul H. ;
Koenig, Seth J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (17) :1593-1602
[8]  
Gu K, 2012, IEEE INT WORKSH MULT, P313, DOI 10.1109/MMSP.2012.6343461
[9]   Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms [J].
Hoffmann, R ;
Lethen, H ;
Marwick, T ;
Arnese, M ;
Fioretti, P ;
Pingitore, A ;
Picano, E ;
Buck, T ;
Erbel, R ;
Flachskampf, FA ;
Hanrath, P .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1996, 27 (02) :330-336
[10]  
Lane E., 2022, A Computer Vision Pipeline for Fully Automated Echocardiogram Interpretation