Stability Analysis of a Class of Nonlinear Fractional Differential Systems With Riemann-Liouville Derivative

被引:3
作者
Zhang, Ruoxun [1 ]
Yang, Shiping [2 ]
Feng, Shiwen [1 ]
机构
[1] Xingtai Univ, Coll Teacher Educ, Xingtai 054001, Peoples R China
[2] Hebei Normal Univ, Coll Phys & Informat Engn, Shijiazhuang 050016, Peoples R China
关键词
Asymptotic stability; Stability criteria; Laplace equations; Differential equations; Eigenvalues and eigenfunctions; Mathematical model;
D O I
10.1109/JAS.2016.7510199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dear Editor, This letter investigates the stability of n-dimensional nonlinear fractional differential systems with Riemann-Liouville derivative. By using the Mittag-Leffler function, Laplace transform and the Gronwall-Bellman lemma, one sufficient condition is attained for the asymptotical stability of a class of nonlinear fractional differential systems whose order lies in (0, 2). According to this theory, if the nonlinear term satisfies some conditions, then the stability condition for nonlinear fractional differential systems is the same as the ones for corresponding linear systems. Two examples are provided to illustrate the applications of our result.
引用
收藏
页码:1883 / 1885
页数:3
相关论文
共 22 条
[1]  
Deng W., 2007, Fractals, V15, P3
[2]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[3]   LMI-based stabilization of a class of fractional-order chaotic systems [J].
Faieghi, Mohammadreza ;
Kuntanapreeda, Suwat ;
Delavari, Hadi ;
Baleanu, Dumitru .
NONLINEAR DYNAMICS, 2013, 72 (1-2) :301-309
[4]  
Grigorenko I., 2003, Phys. Rev. Lett., V91, P15
[5]  
Hartly T., 1995, IEEE Trans. CAS: I, V42, P20
[6]  
Hegazi A., 2011, Appl. Math. Lett., V24, P21
[7]  
Li C., 2004, Chaos Solitons Fractals, V22, P16
[8]  
Li Y., 2009, Automatica, V45, P6
[9]   Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1810-1821
[10]  
Lu J., 2006, Phys. Lett. A, V354, P17