RailPC: A large-scale railway point cloud semantic segmentation dataset

被引:2
|
作者
Jiang, Tengping [1 ,2 ,3 ]
Li, Shiwei [1 ]
Zhang, Qinyu [1 ]
Wang, Guangshuai [4 ]
Zhang, Zequn [5 ]
Zeng, Fankun [6 ]
An, Peng [7 ]
Jin, Xin [3 ]
Liu, Shan [1 ]
Wang, Yongjun [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing, Peoples R China
[2] Minist Nat Resources, Technol Innovat Ctr Integrated Applicat Remote Sen, Nanjing, Peoples R China
[3] Eastern Inst Technol EIT, Ningbo, Peoples R China
[4] Tianjin Key Lab Rail Transit Nav Positioning & Spa, Tianjin, Peoples R China
[5] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou, Peoples R China
[6] Washington Univ St Louis, McKelvey Sch Engn, St Louis, MO USA
[7] Ningbo Univ Technol, Sch Elect & Informat Engn, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
3-D; data acquisition; scene understanding; segmentation; CONTEXTUAL CLASSIFICATION; EXTRACTION; BENCHMARK; SCENE;
D O I
10.1049/cit2.12349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation in the context of 3D point clouds for the railway environment holds a significant economic value, but its development is severely hindered by the lack of suitable and specific datasets. Additionally, the models trained on existing urban road point cloud datasets demonstrate poor generalisation on railway data due to a large domain gap caused by non-overlapping special/rare categories, for example, rail track, track bed etc. To harness the potential of supervised learning methods in the domain of 3D railway semantic segmentation, we introduce RailPC, a new point cloud benchmark. RailPC provides a large-scale dataset with rich annotations for semantic segmentation in the railway environment. Notably, RailPC contains twice the number of annotated points compared to the largest available mobile laser scanning (MLS) point cloud dataset and is the first railway-specific 3D dataset for semantic segmentation. It covers a total of nearly 25 km railway in two different scenes (urban and mountain), with 3 billion points that are finely labelled as 16 most typical classes with respect to railway, and the data acquisition process is completed in China by MLS systems. Through extensive experimentation, we evaluate the performance of advanced scene understanding methods on the annotated dataset and present a synthetic analysis of semantic segmentation results. Based on our findings, we establish some critical challenges towards railway-scale point cloud semantic segmentation. The dataset is available at , and we will continuously update it based on community feedback.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 50 条
  • [1] CSPC-Dataset: New LiDAR Point Cloud Dataset and Benchmark for Large-Scale Scene Semantic Segmentation
    Tong, Guofeng
    Li, Yong
    Chen, Dong
    Sun, Qi
    Cao, Wei
    Xiang, Guiqiu
    IEEE ACCESS, 2020, 8 : 87695 - 87718
  • [2] WHU-Railway3D: A Diverse Dataset and Benchmark for Railway Point Cloud Semantic Segmentation
    Qiu, Bo
    Zhou, Yuzhou
    Dai, Lei
    Wang, Bing
    Li, Jianping
    Dong, Zhen
    Wen, Chenglu
    Ma, Zhiliang
    Yang, Bisheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 20900 - 20916
  • [3] A large-scale remote sensing scene dataset construction for semantic segmentation
    Xu, LeiLei
    Shi, ShanQiu
    Liu, YuJun
    Zhang, Hao
    Wang, Dan
    Zhang, Lu
    Liang, Wan
    Chen, Hao
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (04) : 299 - 323
  • [4] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [5] Automatic Point Cloud Semantic Segmentation of Complex Railway Environments
    Lamas, Daniel
    Soilan, Mario
    Grandio, Javier
    Riveiro, Belen
    REMOTE SENSING, 2021, 13 (12)
  • [6] A Fast and Accurate Segmentation Method for Ordered LiDAR Point Cloud of Large-Scale Scenes
    Zhou, Ying
    Wang, Dan
    Xie, Xiang
    Ren, Yiyi
    Li, Guolin
    Deng, Yangdong
    Wang, Zhihua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1981 - 1985
  • [7] MCTNet: Multiscale Cross-Attention-Based Transformer Network for Semantic Segmentation of Large-Scale Point Cloud
    Guo, Bo
    Deng, Liwei
    Wang, Ruisheng
    Guo, Wenchao
    Ng, Alex Hay-Man
    Bai, Wenfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Large-scale urban point cloud labeling and reconstruction
    Zhang, Liqiang
    Li, Zhuqiang
    Li, Anjian
    Liu, Fangyu
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 : 86 - 100
  • [9] FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation
    Xiao, Aoran
    Yang, Xiaofei
    Lu, Shijian
    Guan, Dayan
    Huang, Jiaxing
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 : 237 - 249
  • [10] LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas
    Ye, Zhen
    Xu, Yusheng
    Huang, Rong
    Tong, Xiaohua
    Li, Xin
    Liu, Xiangfeng
    Luan, Kuifeng
    Hoegner, Ludwig
    Stilla, Uwe
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (07)