CO2 gas hydrate for carbon capture and storage applications - Part 2

被引:14
|
作者
Aminnaji, Morteza [1 ,2 ,3 ]
Qureshi, M. Fahed [4 ]
Dashti, Hossein [5 ,6 ]
Hase, Alfred [2 ]
Mosalanejad, Abdolali [7 ]
Jahanbakhsh, Amir [8 ,9 ]
Babaei, Masoud [3 ]
Amiri, Amirpiran [10 ]
Maroto-Valer, Mercedes [8 ,9 ]
机构
[1] Heriot Watt Univ, Inst GeoEnergy Engn, Edinburgh EH14 4AS, Scotland
[2] ChampionX, Bundrant Technol Ctr, Peterseat Dr, Aberdeen AB12 3HT, Scotland
[3] Univ Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, England
[4] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117580, Singapore
[5] APA Grp, 80 Ann St, Brisbane, Qld 4000, Australia
[6] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[7] Shiraz Univ, Sch Chem & Petr Engn, Dept Petr Engn, Shiraz, Iran
[8] Heriot Watt Univ, Res Ctr Carbon Solut RCCS, Sch Engn & Phys Sci, Edinburgh, Scotland
[9] Heriot Watt Univ, Ind Decarbonisat Res & Innovat Ctr IDRIC, Edinburgh, Scotland
[10] Aston Univ, Energy & Bioprod Res Inst EBRI, Coll Engn & Appl Sci, Birmingham, England
关键词
DIOXIDE-WATER SYSTEM; METHANE-HYDRATE; NATURAL-GAS; BEARING SAND; PHASE-EQUILIBRIA; MECHANICAL-PROPERTIES; HEAT-TRANSFER; AQUEOUS-SOLUTIONS; METHANOL/ETHYLENE GLYCOL; ANTI-AGGLOMERATION;
D O I
10.1016/j.energy.2024.131580
中图分类号
O414.1 [热力学];
学科分类号
摘要
CO2 hydrate offers some substantial applications for Carbon Capture and Storage (CCS). While CO2 hydrate chemistry and CO2 capture are reviewed in part 1 of this review, CO2 transportation and storage are discussed in this part. Basically, CO2 transportation is required between CO2 capture plants and CO2 sequestration sites. It is imperative to acknowledge that most strategies for achieving deep decarbonization are linked to the expansion of the current transport infrastructure. When dealing with substantial distances between CO2 capture plants and CO2 sequestration sites, the expenses associated with CO2 transportation can surpass the capture process itself. Therefore, despite the benefits of CO2 hydrates in CCS, challenges, such as flow assurance issues, may arise. For example, CO2 hydrate formation can lead to pipeline blockages, emphasizing the need for CO2 gas hydrate flow assurance study as discussed in this part. Additionally, site selection for CO2 storage requires careful consideration. Geological storage, whether in hydrate form or through the injection of CO2 or high-CO2 content mixtures, offers potential advantages, such as long-term storage and self-sealing capabilities. However, there are some challenges like CO2 hydrate processes in porous media, injectivity, flow behaviour in hydrate reservoirs, mechanical behaviour, etc., which are discussed in this review.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Separating the debate on CO2 utilisation from carbon capture and storage
    Bruhn, Thomas
    Naims, Henriette
    Olfe-Kraeutlein, Barbara
    ENVIRONMENTAL SCIENCE & POLICY, 2016, 60 : 38 - 43
  • [42] CO2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO2
    Kenji Taira
    Kenji Nakao
    Kimihito Suzuki
    Reaction Kinetics, Mechanisms and Catalysis, 2015, 115 : 563 - 579
  • [43] Porous carbon materials for CO2 capture, storage and electrochemical conversion
    Kim, Changmin
    Talapaneni, Siddulu Naidu
    Dai, Liming
    MATERIALS REPORTS: ENERGY, 2023, 3 (02):
  • [44] Coriolis Metering Technology for CO2 Transportation for Carbon Capture and Storage
    Lin, Chih-Wei
    Bhattacharji, Ayan
    Spicer, George
    Maroto-Valer, M. Mercedes
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2723 - 2726
  • [45] Materials challenges with CO2 transport and injection for carbon capture and storage
    Sonke, J.
    Bos, W. M.
    Paterson, S. J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 114
  • [46] Electrospun graphene carbon nanofibers for CO2 capture and storage: A review
    Othman, Faten Ermala Che
    Yusof, Norhaniza
    Ismail, Ahmad Fauzi
    Rushdan, Ahmad Ilyas
    Low, Hong Yee
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [47] Research on CO2 Corrosion and Protection in Carbon Capture, Utilization and Storage
    Zhang K.
    Sun Y.
    Wang C.-J.
    Ge H.-J.
    Zhu Y.-J.
    Wang H.-Y.
    Surface Technology, 2022, 51 (09): : 43 - 52
  • [48] Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous
    Rehman, Adeel Ur
    Lal, Bhajan
    ENERGIES, 2022, 15 (21)
  • [49] Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation
    Zhong, Dong-Liang
    Wang, Jia-Le
    Lu, Yi-Yu
    Li, Zheng
    Yan, Jin
    ENERGY, 2016, 102 : 621 - 629
  • [50] Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture
    Ahmad Banafi
    Mohamad Mohamadi-Baghmolaei
    Abdollah Hajizadeh
    Reza Azin
    Amir Abbas Izadpanah
    Journal of Solution Chemistry, 2019, 48 : 1461 - 1487