CO2 gas hydrate for carbon capture and storage applications - Part 2

被引:14
|
作者
Aminnaji, Morteza [1 ,2 ,3 ]
Qureshi, M. Fahed [4 ]
Dashti, Hossein [5 ,6 ]
Hase, Alfred [2 ]
Mosalanejad, Abdolali [7 ]
Jahanbakhsh, Amir [8 ,9 ]
Babaei, Masoud [3 ]
Amiri, Amirpiran [10 ]
Maroto-Valer, Mercedes [8 ,9 ]
机构
[1] Heriot Watt Univ, Inst GeoEnergy Engn, Edinburgh EH14 4AS, Scotland
[2] ChampionX, Bundrant Technol Ctr, Peterseat Dr, Aberdeen AB12 3HT, Scotland
[3] Univ Manchester, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, England
[4] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117580, Singapore
[5] APA Grp, 80 Ann St, Brisbane, Qld 4000, Australia
[6] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[7] Shiraz Univ, Sch Chem & Petr Engn, Dept Petr Engn, Shiraz, Iran
[8] Heriot Watt Univ, Res Ctr Carbon Solut RCCS, Sch Engn & Phys Sci, Edinburgh, Scotland
[9] Heriot Watt Univ, Ind Decarbonisat Res & Innovat Ctr IDRIC, Edinburgh, Scotland
[10] Aston Univ, Energy & Bioprod Res Inst EBRI, Coll Engn & Appl Sci, Birmingham, England
关键词
DIOXIDE-WATER SYSTEM; METHANE-HYDRATE; NATURAL-GAS; BEARING SAND; PHASE-EQUILIBRIA; MECHANICAL-PROPERTIES; HEAT-TRANSFER; AQUEOUS-SOLUTIONS; METHANOL/ETHYLENE GLYCOL; ANTI-AGGLOMERATION;
D O I
10.1016/j.energy.2024.131580
中图分类号
O414.1 [热力学];
学科分类号
摘要
CO2 hydrate offers some substantial applications for Carbon Capture and Storage (CCS). While CO2 hydrate chemistry and CO2 capture are reviewed in part 1 of this review, CO2 transportation and storage are discussed in this part. Basically, CO2 transportation is required between CO2 capture plants and CO2 sequestration sites. It is imperative to acknowledge that most strategies for achieving deep decarbonization are linked to the expansion of the current transport infrastructure. When dealing with substantial distances between CO2 capture plants and CO2 sequestration sites, the expenses associated with CO2 transportation can surpass the capture process itself. Therefore, despite the benefits of CO2 hydrates in CCS, challenges, such as flow assurance issues, may arise. For example, CO2 hydrate formation can lead to pipeline blockages, emphasizing the need for CO2 gas hydrate flow assurance study as discussed in this part. Additionally, site selection for CO2 storage requires careful consideration. Geological storage, whether in hydrate form or through the injection of CO2 or high-CO2 content mixtures, offers potential advantages, such as long-term storage and self-sealing capabilities. However, there are some challenges like CO2 hydrate processes in porous media, injectivity, flow behaviour in hydrate reservoirs, mechanical behaviour, etc., which are discussed in this review.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] CO2 capture and gas separation on boron carbon nanotubes
    Sun, Qiao
    Wang, Meng
    Li, Zhen
    Ma, Yingying
    Du, Aijun
    CHEMICAL PHYSICS LETTERS, 2013, 575 : 59 - 66
  • [32] Perspectives on CO2 capture and storage
    Johnsson, Filip
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (02): : 119 - 133
  • [33] The cost of CO2 capture and storage
    Rubin, Edward S.
    Davison, John E.
    Herzog, Howard J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 : 378 - 400
  • [34] Effects of salinity on hydrate stability and implications for storage of CO2 in natural gas hydrate reservoirs
    Husebo, Jarle
    Ersland, Geir
    Graue, Arne
    Kvamme, Bjorn
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 3731 - 3738
  • [35] Prospects for CO2 capture and storage
    Energy World, 2005, (327): : 14 - 16
  • [36] The problems for the capture and storage of CO2
    不详
    DYNA, 2015, 90 (03): : 237 - 237
  • [37] Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage
    van Leeuwen, Charlotte
    Hensen, Arjan
    Meijer, Harro A. J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 19 : 420 - 431
  • [38] Modelling of gas to hydrate conversion for promoting CO2 capture processes in the oil and gas industry
    Baghban, Alireza
    Bahadori, Mohammad
    Kashiwao, Tomoaki
    Bahadori, Alireza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (07) : 642 - 651
  • [39] CO2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO2
    Taira, Kenji
    Nakao, Kenji
    Suzuki, Kimihito
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2015, 115 (02) : 563 - 579
  • [40] Atmospheric CO2 mitigation technologies: carbon capture utilization and storage
    Nocito, Francesco
    Dibenedetto, Angela
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2020, 21 : 34 - 43