Estimating Hourly All-Sky Surface Longwave Upward Radiation Using the New Generation of Chinese Geostationary Weather Satellites Fengyun-4A/AGRI

被引:1
作者
Zeng, Qi [1 ]
Cheng, Jie [2 ]
Yue, Weifeng [3 ]
机构
[1] Beijing Normal Univ BNU, Inst Remote Sensing Sci & Engn, Coll Water Sci, State Key Lab Remote Sensing Sci,Fac Geog Sci, Beijing 100875, Peoples R China
[2] BNU, State Key Lab Remote Sensing Sci, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China
[3] BNU, Coll Water Sci, Beijing 100875, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Clouds; Ocean temperature; Land surface; Sea surface; Spatial resolution; Land surface temperature; Atmospheric measurements; FY-4A/Advanced Geostationary Radiation Imager (AGRI); hybrid method; light gradient boosting machine (LightGBM); machine learning (ML); surface longwave upward radiation (SLUR); surface radiation budget (SRB); LAND-SURFACE; EMISSIVITY; TEMPERATURE; FLUXES; PARAMETERIZATION; NETWORK; LST; TOP;
D O I
10.1109/TGRS.2024.3399781
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Surface longwave upward radiation (SLUR) is a key parameter in studying hydrological and climate models. This study develops a framework for estimating the all-sky SLUR from the Advanced Geostationary Radiation Imager (AGRI) onboard the Chinese geostationary weather satellite FengYun-4A (FY-4A). The framework is composed of a hybrid method for estimating clear-sky SLUR and a machine learning (ML) method for estimating cloudy-sky SLUR. According to the in situ validation, the R-2 /bias/root mean square error (RMSE) of the developed hybrid method is 0.95/0.59/18.41 W/m(2), which is clearly superior to the AGRI official SLUR and ERA5 SLUR with an R-2 /bias/RMSE of 0.95/-7.79/19.04 and 0.92/-4.94/23.2 W/m(2), respectively. The developed hybrid method performs better than the classical land surface temperature-broadband emissivity (LST-BBE) method. The R-2 /bias/RMSE of the developed cloudy-sky SLUR estimate light gradient boosting machine (LightGBM) model is 0.85/0.56/21.16 W/m(2), which is also better than the accuracy of the LST-BBE method and comparable to the accuracy of the ERA5 SLUR. The R-2 , bias, and RMES of the all-sky SLUR are 0.93, 0.57, and 19.58 W/m(2), respectively. The developed framework is employed to determine hourly all-sky SLUR from AGRI data. This study provides a promising solution to obtain hourly all-sky SLUR from geostationary satellites (GOESs).
引用
收藏
页码:1 / 12
页数:12
相关论文
共 61 条
[1]   Connections of climate change and variability to large and extreme forest fires in southeast Australia [J].
Abram, Nerilie J. ;
Henley, Benjamin J. ;
Sen Gupta, Alex ;
Lippmann, Tanya J. R. ;
Clarke, Hamish ;
Dowdy, Andrew J. ;
Sharples, Jason J. ;
Nolan, Rachael H. ;
Zhang, Tianran ;
Wooster, Martin J. ;
Wurtzel, Jennifer B. ;
Meissner, Katrin J. ;
Pitman, Andrew J. ;
Ukkola, Anna M. ;
Murphy, Brett P. ;
Tapper, Nigel J. ;
Boer, Matthias M. .
COMMUNICATIONS EARTH & ENVIRONMENT, 2021, 2 (01)
[2]   The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers [J].
Baklanov, Alexander A. ;
Grisogono, Branko ;
Bornstein, Robert ;
Mahrt, Larry ;
Zilitinkevich, Sergej S. ;
Taylor, Peter ;
Larsen, Soren E. ;
Rotach, Mathias W. ;
Fernando, H. J. S. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (02) :123-128
[3]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[4]   Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community [J].
Ball, John E. ;
Anderson, Derek T. ;
Chan, Chee Seng .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
[5]   Estimating air surface temperature in Portugal using MODIS LST data [J].
Benali, A. ;
Carvalho, A. C. ;
Nunes, J. P. ;
Carvalhais, N. ;
Santos, A. .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :108-121
[6]   An introduction to the Australian and New Zealand flux tower network - OzFlux [J].
Beringer, Jason ;
Hutley, Lindsay B. ;
McHugh, Ian ;
Arndt, Stefan K. ;
Campbell, David ;
Cleugh, Helen A. ;
Cleverly, James ;
Resco de Dios, Victor ;
Eamus, Derek ;
Evans, Bradley ;
Ewenz, Cacilia ;
Grace, Peter ;
Griebel, Anne ;
Haverd, Vanessa ;
Hinko-Najera, Nina ;
Huete, Alfredo ;
Isaac, Peter ;
Kanniah, Kasturi ;
Leuning, Ray ;
Liddell, Michael J. ;
Macfarlane, Craig ;
Meyer, Wayne ;
Moore, Caitlin ;
Pendall, Elise ;
Phillips, Alison ;
Phillips, Rebecca L. ;
Prober, Suzanne M. ;
Restrepo-Coupe, Natalia ;
Rutledge, Susanna ;
Schroder, Ivan ;
Silberstein, Richard ;
Southall, Patricia ;
Yee, Mei Sun ;
Tapper, Nigel J. ;
van Gorsel, Eva ;
Vote, Camilla ;
Walker, Jeff ;
Wardlaw, Tim .
BIOGEOSCIENCES, 2016, 13 (21) :5895-5916
[7]   Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study [J].
Bisht, Gautam ;
Bras, Rafael L. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1522-1534
[8]  
Borbas E.E., 2005, Proceedings of the XIV. International ATOVS Study Conference, Beijing, China, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison, WI, P763
[9]   A study of cloud cover over multiple sites within Australia for satellite/ground atmospheric optical communication [J].
Chedzey, Helen ;
Lynch, Mervyn ;
Nener, Brett ;
Devrelis, Vladimir ;
Mudge, Kerry ;
Grant, Ken .
2022 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS (ICSOS), 2022, :124-127
[10]   An efficient hybrid method for estimating clear-sky surface downward longwave radiation from MODIS data [J].
Cheng, Jie ;
Liang, Shunlin ;
Wang, Wenhui ;
Guo, Yamin .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (05) :2616-2630