Kernel Interpolation with Sparse Grids

被引:0
|
作者
Yadav, Mohit [1 ]
Sheldon, Daniel [1 ]
Musco, Cameron [1 ]
机构
[1] Univ Massachusetts Amherst, Amherst, MA 01003 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022 | 2022年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Structured kernel interpolation (SKI) accelerates Gaussian process (GP) inference by interpolating the kernel covariance function using a dense grid of inducing points, whose corresponding kernel matrix is highly structured and thus amenable to fast linear algebra. Unfortunately, SKI scales poorly in the dimension of the input points, since the dense grid size grows exponentially with the dimension. To mitigate this issue, we propose the use of sparse grids within the SKI framework. These grids enable accurate interpolation, but with a number of points growing more slowly with dimension. We contribute a novel nearly linear time matrix-vector multiplication algorithm for the sparse grid kernel matrix. We also describe how sparse grids can be combined with an efficient interpolation scheme based on simplices. With these modifications, we demonstrate that SKI can be scaled to higher dimensions while maintaining accuracy.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Sparse grids, adaptivity, and symmetry
    Yserentant, H.
    COMPUTING, 2006, 78 (03) : 195 - 209
  • [32] Sparse Grids, Adaptivity, and Symmetry
    H. Yserentant
    Computing, 2006, 78 : 195 - 209
  • [33] Sampling inequalities for sparse grids
    Rieger, Christian
    Wendland, Holger
    NUMERISCHE MATHEMATIK, 2017, 136 (02) : 439 - 466
  • [34] Sampling inequalities for sparse grids
    Christian Rieger
    Holger Wendland
    Numerische Mathematik, 2017, 136 : 439 - 466
  • [35] Integral operators on sparse grids
    Knapek, S
    Koster, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1794 - 1809
  • [36] Data mining with sparse grids
    Garcke, J
    Griebel, M
    Thess, M
    COMPUTING, 2001, 67 (03) : 225 - 253
  • [37] Data Mining with Sparse Grids
    J. Garcke
    M. Griebel
    M. Thess
    Computing, 2001, 67 : 225 - 253
  • [38] Sparse grids for the Schrodinger equation
    Griebel, Michael
    Hamaekers, Jan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2007, 41 (02) : 215 - 247
  • [39] Kernel interpolation generalizes poorly
    Li, Yicheng
    Zhang, Haobo
    Lin, Qian
    BIOMETRIKA, 2024, 111 (02) : 715 - 722
  • [40] The Interpolation of Sparse Geophysical Data
    Yangkang Chen
    Xiaohong Chen
    Yufeng Wang
    Shaohuan Zu
    Surveys in Geophysics, 2019, 40 : 73 - 105