Kernel Interpolation with Sparse Grids

被引:0
|
作者
Yadav, Mohit [1 ]
Sheldon, Daniel [1 ]
Musco, Cameron [1 ]
机构
[1] Univ Massachusetts Amherst, Amherst, MA 01003 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022 | 2022年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Structured kernel interpolation (SKI) accelerates Gaussian process (GP) inference by interpolating the kernel covariance function using a dense grid of inducing points, whose corresponding kernel matrix is highly structured and thus amenable to fast linear algebra. Unfortunately, SKI scales poorly in the dimension of the input points, since the dense grid size grows exponentially with the dimension. To mitigate this issue, we propose the use of sparse grids within the SKI framework. These grids enable accurate interpolation, but with a number of points growing more slowly with dimension. We contribute a novel nearly linear time matrix-vector multiplication algorithm for the sparse grid kernel matrix. We also describe how sparse grids can be combined with an efficient interpolation scheme based on simplices. With these modifications, we demonstrate that SKI can be scaled to higher dimensions while maintaining accuracy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spline interpolation on sparse grids
    Sickel, Winfried
    Ullrich, Tino
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 337 - 383
  • [2] APPROXIMATION OF MULTIVARIATE FUNCTIONS ON SPARSE GRIDS BY KERNEL-BASED QUASI-INTERPOLATION
    Jeong, Byeongseon
    Kersey, Scott N.
    Yoon, Jungho
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A953 - A979
  • [3] Periodic interpolation and wavelets on sparse grids
    Sprengel, F
    NUMERICAL ALGORITHMS, 1998, 17 (1-2) : 147 - 169
  • [4] Periodic interpolation and wavelets on sparse grids
    Frauke Sprengel
    Numerical Algorithms, 1998, 17 : 147 - 169
  • [5] High dimensional polynomial interpolation on sparse grids
    Volker Barthelmann
    Erich Novak
    Klaus Ritter
    Advances in Computational Mathematics, 2000, 12 : 273 - 288
  • [6] High dimensional polynomial interpolation on sparse grids
    Barthelmann, V
    Novak, E
    Ritter, K
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) : 273 - 288
  • [7] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [8] MULTILEVEL SPARSE KERNEL-BASED INTERPOLATION
    Georgoulis, Emmanuil H.
    Levesley, Jeremy
    Subhan, Fazli
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02): : A815 - A831
  • [9] A class of periodic function spaces and interpolation on sparse grids
    Sprengel, F
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (1-2) : 273 - 293
  • [10] Multilevel Quasi-Interpolation on Chebyshev Sparse Grids
    Alsharif, Faisal
    COMPUTATION, 2024, 12 (07)