共 21 条
Digital ray: enhancing cataractous fundus images using style transfer generative adversarial networks to improve retinopathy detection
被引:4
作者:
Liu, Lixue
[1
]
Hong, Jiaming
[2
]
Wu, Yuxuan
[1
]
Liu, Shaopeng
[3
]
Wang, Kai
[3
]
Li, Mingyuan
[1
]
Zhao, Lanqin
[1
]
Liu, Zhenzhen
[1
]
Li, Longhui
[1
]
Cui, Tingxin
[1
]
Tsui, Ching-Kit
[1
]
Xu, Fabao
[4
]
Hu, Weiling
[1
]
Yun, Dongyuan
[1
]
Chen, Xi
[1
]
Shang, Yuanjun
[1
]
Bi, Shaowei
[1
]
Wei, Xiaoyue
[1
]
Lai, Yunxi
[1
]
Lin, Duoru
[1
]
Fu, Zhe
[5
]
Deng, Yaru
[5
]
Cai, Kaimin
[5
]
Xie, Yi
[5
]
Cao, Zizheng
[1
]
Wang, Dongni
[1
]
Zhang, Xulin
[1
]
Dongye, Meimei
[1
]
Lin, Haotian
[1
]
Wu, Xiaohang
[1
]
机构:
[1] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Guangdong, Peoples R China
[2] Guangzhou Univ Chinese Med, Sch Med Informat Engn, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China
[4] Shandong Univ, Qilu Hosp, Jinan, Shandong, Peoples R China
[5] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou, Guangdong, Peoples R China
关键词:
Lens and zonules;
Imaging;
Retina;
QUALITY;
RESTORATION;
D O I:
10.1136/bjo-2024-325403
中图分类号:
R77 [眼科学];
学科分类号:
100212 ;
摘要:
Background/aims The aim of this study was to develop and evaluate digital ray, based on preoperative and postoperative image pairs using style transfer generative adversarial networks (GANs), to enhance cataractous fundus images for improved retinopathy detection. Methods For eligible cataract patients, preoperative and postoperative colour fundus photographs (CFP) and ultra-wide field (UWF) images were captured. Then, both the original CycleGAN and a modified CycleGAN (C2ycleGAN) framework were adopted for image generation and quantitatively compared using Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Additionally, CFP and UWF images from another cataract cohort were used to test model performances. Different panels of ophthalmologists evaluated the quality, authenticity and diagnostic efficacy of the generated images. Results A total of 959 CFP and 1009 UWF image pairs were included in model development. FID and KID indicated that images generated by C2ycleGAN presented significantly improved quality. Based on ophthalmologists' average ratings, the percentages of inadequate-quality images decreased from 32% to 18.8% for CFP, and from 18.7% to 14.7% for UWF. Only 24.8% and 13.8% of generated CFP and UWF images could be recognised as synthetic. The accuracy of retinopathy detection significantly increased from 78% to 91% for CFP and from 91% to 93% for UWF. For retinopathy subtype diagnosis, the accuracies also increased from 87%-94% to 91%-100% for CFP and from 87%-95% to 93%-97% for UWF. Conclusion Digital ray could generate realistic postoperative CFP and UWF images with enhanced quality and accuracy for overall detection and subtype diagnosis of retinopathies, especially for CFP.\
引用
收藏
页码:1423 / 1429
页数:7
相关论文