Semantic Segmentation of High-Resolution Airborne SAR Images using Tomographic Information

被引:0
|
作者
D'Hondt, Olivier [1 ]
Haensch, Ronny [2 ]
Cazcarra-Bes, Victor [2 ]
Hellwich, Olaf [1 ]
机构
[1] Tech Univ Berlin, Comp Vis & Remote Sensing, Sekr MAR 6-5,Marchstr 23, D-10587 Berlin, Germany
[2] German Aerosp Ctr DLR, Microwaves & Radar Inst, SAR Technol Munchener Str 20, D-82234 Oberpfaffenhofen, Germany
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this paper we propose to validate a previously developed semantic segmentation method on F-SAR high-resolution tomographic data acquired on a rural forested area. The method consists in the design of relevant features that exploit the information present in tomograms and their combination with spatial features computed on image intensity and tomograms. Our main goal is to demonstrate that these features are relevant for a variety of data and classes. In our experiments we show that features computed from single-polarization tomograms lead to better results than these obtained from fully polarimetric images for classes that exhibit vertical information. This is especially the case for urban and forested areas.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [1] Semantic segmentation of high-resolution images
    Juhong WANG
    Bin LIU
    Kun XU
    Science China(Information Sciences), 2017, 60 (12) : 256 - 261
  • [2] Semantic segmentation of high-resolution images
    Juhong Wang
    Bin Liu
    Kun Xu
    Science China Information Sciences, 2017, 60
  • [3] Semantic segmentation of high-resolution images
    Wang, Juhong
    Liu, Bin
    Xu, Kun
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (12) : 123101:1 - 123101:6
  • [4] Railroad semantic segmentation on high-resolution images
    Belyaev, Sergey
    Popov, Igor
    Shubnikov, Vladislav
    Popov, Pavel
    Boltenkova, Ekaterina
    Savchuk, Daniil
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [5] Semantic segmentation of high-resolution satellite images using deep learning
    Kuldeep Chaurasia
    Rijul Nandy
    Omkar Pawar
    Ravi Ranjan Singh
    Meghana Ahire
    Earth Science Informatics, 2021, 14 : 2161 - 2170
  • [6] Semantic segmentation of high-resolution satellite images using deep learning
    Chaurasia, Kuldeep
    Nandy, Rijul
    Pawar, Omkar
    Singh, Ravi Ranjan
    Ahire, Meghana
    EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 2161 - 2170
  • [7] Semantic Segmentation of High-Resolution Airborne Images with Dual-Stream DeepLabV3+
    Akcay, Ozgun
    Kinaci, Ahmet Cumhur
    Avsar, Emin Ozgur
    Aydar, Umut
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (01)
  • [8] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING AN IMPROVED TRANSFORMER
    Liu, Yuheng
    Mei, Shaohui
    Zhang, Shun
    Wang, Ye
    He, Mingyi
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3496 - 3499
  • [9] Semantic Segmentation with High-Resolution Sentinel-1 SAR Data
    Erten, Hakan
    Bostanci, Erkan
    Acici, Koray
    Guzel, Mehmet Serdar
    Asuroglu, Tunc
    Aydin, Ayhan
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [10] High-resolution remote sensing images semantic segmentation using improved UNet and SegNet
    Wang, Xin
    Jing, Shihan
    Dai, Huifeng
    Shi, Aiye
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108