Label-Free Virtual Peritoneal Lavage Cytology via Deep-Learning-Assisted Single-Color Stimulated Raman Scattering Microscopy

被引:0
作者
Fang, Tinghe [1 ]
Wu, Zhouqiao [2 ]
Chen, Xun [1 ,3 ]
Tan, Luxin [4 ]
Li, Zhongwu [2 ]
Ji, Jiafu [2 ]
Fan, Yubo [1 ,3 ]
Li, Ziyu [4 ]
Yue, Shuhua [1 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol,Minist Educ,Inst Med, Beijing 100191, Peoples R China
[2] Peking Univ Canc Hosp & Inst, Minist Educ, Gastrointestinal Canc Ctr, Key Lab Carcinogenesis & Translat Res, Beijing 100142, Peoples R China
[3] Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China
[4] Peking Univ Canc Hosp & Inst, Minist Educ, Dept Pathol, Key Lab Carcinogenesis & Translat Res, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; digital pathology; gastric cancer; label-free virtual cytology; stimulated Raman scattering microscopy; GASTRIC-CANCER; DIAGNOSIS; HISTOPATHOLOGY; HISTOLOGY;
D O I
10.1002/aisy.202300689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clinical guidelines for gastric cancer treatment recommend intraoperative peritoneal lavage cytology to detect free cancer cells. Patients with positive cytology require neoadjuvant chemotherapy instead of instant resection, and conversion to negative cytology results in improved survival. However, pathologists' or artificial intelligence's accuracy of cytological diagnosis is disturbed by manually produced, unstandardized slides. In addition, the elaborate infrastructure makes cytology accessible to a limited number of medical institutes. This work develops CellGAN, a deep learning method that enables label-free virtual peritoneal lavage cytology by producing virtual hematoxylin-eosin-stained images with single-color stimulated Raman scattering microscopy. A structural similarity loss is introduced to overcome the challenge of unsupervised virtual pathology techniques that cannot accurately present cellular structures. This method achieves a structural similarity of 0.820 +/- 0.041 and a nucleus area consistency of 0.698 +/- 0.102, indicating the staining fidelity outperforms the state-of-the-art method. Diagnosis using virtually stained cells reaches 93.8% accuracy and substantial consistency with conventional staining. Single-cell detection and classification on virtual slides achieve a mean average precision of 0.924 and an area under the receiver operating characteristic curve of 0.906, respectively. Collectively, this method achieves standardized and accurate virtual peritoneal lavage cytology and holds great potential for clinical translation. A virtual cytology method is developed using single-color stimulated Raman scattering microscopy and deep learning to produce standardized images resembling stained samples and provide a rapid, end-to-end diagnosis. A deep learning model CellGAN is designed for accurate staining of cellular structures. In the case of peritoneal lavage cytology, the diagnosis with this method shows significant consistency with conventional cytology.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:12
相关论文
共 45 条
  • [1] Gastric Cancer, Version 2.2022
    Ajani, Jaffer A.
    D'Amico, Thomas A.
    Bentrem, David J.
    Chao, Joseph
    Cooke, David
    Corvera, Carlos
    Das, Prajnan
    Enzinger, Peter C.
    Enzler, Thomas
    Fanta, Paul
    Farjah, Farhood
    Gerdes, Hans
    Gibson, Michael K.
    Hochwald, Steven
    Hofstetter, Wayne L.
    Ilson, David H.
    Keswani, Rajesh N.
    Kim, Sunnie
    Kleinberg, Lawrence R.
    Klempner, Samuel J.
    Lacy, Jill
    Ly, Quan P.
    Matkowskyj, Kristina A.
    McNamara, Michael
    Mulcahy, Mary F.
    Outlaw, Darryl
    Park, Haeseong
    Perry, Kyle A.
    Pimiento, Jose
    Poultsides, George A.
    Reznik, Scott
    Roses, Robert E.
    Strong, Vivian E.
    Su, Stacey
    Wang, Hanlin L.
    Wiesner, Georgia
    Willett, Christopher G.
    Yakoub, Danny
    Yoon, Harry
    McMillian, Nicole
    Pluchino, Lenora A.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02): : 167 - 192
  • [2] Deep learning-enabled virtual histological staining of biological samples
    Bai, Bijie
    Yang, Xilin
    Li, Yuzhu
    Zhang, Yijie
    Pillar, Nir
    Ozcan, Aydogan
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [3] Bush C. L., 1977, Lab. Med, V8, P16
  • [4] Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy
    Cao, Rui
    Nelson, Scott D.
    Davis, Samuel
    Liang, Yu
    Luo, Yilin
    Zhang, Yide
    Crawford, Brooke
    Wang, Lihong, V
    [J]. NATURE BIOMEDICAL ENGINEERING, 2023, 7 (02) : 124 - +
  • [5] An unsupervised style normalization method for cytopathology images
    Chen, Xihao
    Yu, Jingya
    Cheng, Shenghua
    Geng, Xiebo
    Liu, Sibo
    Han, Wei
    Hu, Junbo
    Chen, Li
    Liu, Xiuli
    Zeng, Shaoqun
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3852 - 3863
  • [6] Accurate and Rapid Detection of Peritoneal Metastasis from Gastric Cancer by AI-Assisted Stimulated Raman Molecular Cytology
    Chen, Xun
    Wu, Zhouqiao
    He, Yexuan
    Hao, Zhe
    Wang, Qi
    Zhou, Keji
    Zhou, Wanhui
    Wang, Pu
    Shan, Fei
    Li, Zhongwu
    Ji, Jiafu
    Fan, Yubo
    Li, Ziyu
    Yue, Shuhua
    [J]. ADVANCED SCIENCE, 2023, 10 (21)
  • [7] Engin D, 2018, Arxiv, DOI arXiv:1805.05308
  • [8] Multicolored stain-free histopathology with coherent Raman imaging
    Freudiger, Christian W.
    Pfannl, Rolf
    Orringer, Daniel A.
    Saar, Brian G.
    Ji, Minbiao
    Zeng, Qing
    Ottoboni, Linda
    Ying, Wei
    Waeber, Christian
    Sims, John R.
    De Jager, Philip L.
    Sagher, Oren
    Philbert, Martin A.
    Xu, Xiaoyin
    Kesari, Santosh
    Xie, X. Sunney
    Young, Geoffrey S.
    [J]. LABORATORY INVESTIGATION, 2012, 92 (10) : 1492 - 1502
  • [9] High-Throughput Raman Flow Cytometry and Beyond
    Gala de Pablo, Julia
    Lindley, Matthew
    Hiramatsu, Kotaro
    Goda, Keisuke
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (09) : 2132 - 2143
  • [10] Ultra-compact tunable fiber laser for coherent anti-Stokes Raman imaging
    Gottschall, Thomas
    Meyer-Zedler, Tobias
    Schmitt, Michael
    Huber, Robert
    Popp, Juergen
    Tuennermann, Andreas
    Limpert, Jens
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (09) : 1561 - 1568