A nonautonomous delayed viscoelastic wave equation with a linear damping: well-posedness and exponential stability

被引:0
作者
Djemoui, Marwa [1 ]
Chellaoua, Houria [1 ,2 ]
Boukhatem, Yamna [1 ,3 ]
机构
[1] Univ Laghouat, Lab Pure & Appl Math, Laghouat, Algeria
[2] Univ Ghardaia, Dept Math & Comp Sci, Fac Sci & Technol, Ghardaia, Algeria
[3] Natl Higher Sch Math, Mahelma, Algeria
来源
JOURNAL OF MATHEMATICAL MODELING | 2024年 / 12卷 / 02期
关键词
Energy decay; global existence; Lyapunov functional; time delay; 2ND-ORDER EVOLUTION-EQUATIONS; GLOBAL EXISTENCE; ASYMPTOTIC STABILITY; INFINITE MEMORY; GENERAL DECAY; STABILIZATION; BOUNDARY; FEEDBACK; TERM; BEHAVIOR;
D O I
10.22124/jmm.2024.26420.2331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a nonautonomous viscoelastic wave equation with linear damping and delayed terms. Under some appropriate assumptions, we prove the global existence using the semi- group theory. Furthermore, for a small enough coefficient of delay, we obtained a stability result via a suitable Lyapunov function where the kernel function decays exponentially.
引用
收藏
页码:319 / 336
页数:18
相关论文
共 46 条
[1]   Well-posedness and stability results for some nonautonomous abstract linear hyperbolic equations with memory [J].
Al-Khulaifi, Waled ;
Diagana, Toka ;
Guesmia, Aissa .
SEMIGROUP FORUM, 2022, 105 (02) :351-373
[2]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[3]   Feedback boundary stabilization of wave equations with interior delay [J].
Ammari, Kais ;
Nicaise, Serge ;
Pignotti, Cristina .
SYSTEMS & CONTROL LETTERS, 2010, 59 (10) :623-628
[4]  
[Anonymous], 2002, Differential Integral Equations
[5]  
Benaissa A, 2014, INT J DYN SYST DIFFE, V5, P1
[6]   Feedback stabilization of a class of evolution equations with delay [J].
Benhassi, E. M. Ait ;
Ammari, K. ;
Boulite, S. ;
Maniar, L. .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) :103-121
[7]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[8]  
Cavalcanti MM, 2002, ELECTRON J DIFFER EQ
[9]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[10]  
Chellaoua H., 2020, Proc. Indian Acad. Sci. Math. Sci., V2, P7