Minimum Energy Density Steering of Linear Systems With Gromov-Wasserstein Terminal Cost

被引:0
作者
Morimoto, Kohei [1 ]
Kashima, Kenji [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Costs; Programming; Shape; Probability distribution; Optimization; Gaussian distribution; Covariance matrices; Optimal density control; optimal transport; Gromov-Wasserstein distance;
D O I
10.1109/LCSYS.2024.3397228
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we newly formulate and solve the optimal density control problem with Gromov-Wasserstein (GW) terminal cost in discrete-time linear Gaussian systems. Differently from the Wasserstein or Kullback-Leibler distances employed in the existing works, the GW distance quantifies the difference in shapes of the distribution, which is invariant under translation and rotation. Consequently, our formulation allows us to find small energy inputs that achieve the desired shape of the terminal distribution, which has practical applications, e.g., robotic swarms. We demonstrate that the problem can be reduced to a Difference of Convex (DC) programming, which is efficiently solvable through the DC algorithm. Through numerical experiments, we confirm that the state distribution reaches the terminal distribution that can be realized with the minimum control energy among those having the specified shape.
引用
收藏
页码:586 / 591
页数:6
相关论文
共 24 条
  • [1] Anderson B. D. O., 1969, Journal of Statistical Physics, V1, P133, DOI 10.1007/BF01007246
  • [2] [Anonymous], 2023, 21MOSEK Optimizer API for Python.
  • [3] Lagrangian relaxation of quadratic matrix constraints
    Anstreicher, K
    Wolkowicz, H
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (01) : 41 - 55
  • [4] Balci E., 2022, arXiv
  • [5] Covariance Steering of Discrete-Time Stochastic Linear Systems Based on Wasserstein Distance Terminal Cost
    Balci, Isin M.
    Bakolas, Efstathios
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06): : 2000 - 2005
  • [6] Bertsekas D., 1999, Nonlinear programming
  • [7] Chen YX, 2016, IEEE T AUTOMAT CONTR, V61, P1158, DOI 10.1109/TAC.2015.2457784
  • [8] Optimal Steering of a Linear Stochastic System to a Final Probability Distribution, Part II
    Chen, Yongxin
    Georgiou, Tryphon T.
    Pavon, Michele
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (05) : 1170 - 1180
  • [9] Gromov-Wasserstein distances between Gaussian distributions
    Delon, Julie
    Desolneux, Agnes
    Salmona, Antoine
    [J]. JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) : 1178 - 1198
  • [10] Diamond S, 2016, J MACH LEARN RES, V17