Prospects of artificial intelligence in the development of sustainable separation processes

被引:5
作者
Liu, Dupeng [1 ,2 ]
Sun, Ning [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Adv Biofuels & Bioprod Proc Dev Unit, Emeryville, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
来源
FRONTIERS IN SUSTAINABILITY | 2023年 / 4卷
关键词
artificial intelligence (AI); separation process; adsorption technique; membrane technique; extraction technique; separation science and technology; SELECTION; ULTRAFILTRATION; PREDICTION; SYSTEM;
D O I
10.3389/frsus.2023.1210209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Addressing the urgent need for more energy-efficient separation technologies is paramount in reducing energy consumption and lessening environmental impact as we march toward a carbon-neutral society. The rapid progression of AI and its promising applications in separation science presents new, fascinating possibilities. For instance, AI algorithms can forecast the properties of prospective new materials, speeding up the process of sorbent material innovation. With the ability to analyze vast datasets related to processes, machine learning driven by data can enhance operations to reduce energy wastage and improve error detection. The recent rise of Generative Pretrained Transformer models (GPT) has motivated researchers to construct specialized large-scale language models (LLM) based on a comprehensive scientific corpus of papers, reference materials, and knowledge bases. These models are useful tools for facilitating the rapid selection of suitable separation techniques. In this article, we present an exploration of AI's role in promoting sustainable separation processes, covering a concise history of its implementation, potential advantages, inherent limitations, and a vision for its future growth.
引用
收藏
页数:8
相关论文
共 50 条
[1]   From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography [J].
Alherech, Manar ;
Omolabake, Surajudeen ;
Holland, Christopher M. ;
Klinger, Gracielou E. ;
Hegg, Eric L. ;
Stahl, Shannon S. .
ACS CENTRAL SCIENCE, 2021, 7 (11) :1831-1837
[2]  
[Anonymous], 2005, Materials for Separation Technologies. Energy and Emission Reduction Opportunities, P1218755, DOI DOI 10.2172/1218755
[3]   DEVELOPMENT OF AN EXPERT SYSTEM FOR PHYSICAL PROPERTY PREDICTIONS [J].
BANARESALCANTARA, R ;
WESTERBERG, AW ;
RYCHENER, MD .
COMPUTERS & CHEMICAL ENGINEERING, 1985, 9 (02) :127-142
[4]  
Barlocher Christian, 1996, Database of Zeolite Structures
[5]   Designing exceptional gas-separation polymer membranes using machine learning [J].
Barnett, J. Wesley ;
Bilchak, Connor R. ;
Wang, Yiwen ;
Benicewicz, Brian C. ;
Murdock, Laura A. ;
Bereau, Tristan ;
Kumar, Sanat K. .
SCIENCE ADVANCES, 2020, 6 (20)
[6]   Machine learning for data-driven discovery in solid Earth geoscience [J].
Bergen, Karianne J. ;
Johnson, Paul A. ;
de Hoop, Maarten V. ;
Beroza, Gregory C. .
SCIENCE, 2019, 363 (6433) :1299-+
[7]   ChatGPT: five priorities for research [J].
Bockting, Claudi ;
van Dis, Eva A. M. ;
Bollen, Johan ;
van Rooij, Robert ;
Zuidema, Willem L. .
NATURE, 2023, 614 (7947) :224-226
[8]  
Bowen WR, 1998, CHEM ENG SCI, V53, P3793
[9]   Dynamic ultrafiltration of proteins - A neural network approach [J].
Bowen, WR ;
Jones, MG ;
Yousef, HNS .
JOURNAL OF MEMBRANE SCIENCE, 1998, 146 (02) :225-235
[10]  
Cantwell FF, 2002, COMP ANAL C, V37, P297, DOI 10.1016/S0166-526X(02)80048-4