Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

被引:1
|
作者
Lai, Yi-Chun [1 ]
Chiang, Shu-Yin [2 ]
Kan, Yao-Chiang [3 ]
Lin, Hsueh-Chun [4 ]
机构
[1] China Med Univ, Dept Publ Hlth, Taichung 406040, Taiwan
[2] Ming Chuan Univ, Dept Informat & Telecommun Engn, Taoyuan 333, Taiwan
[3] Yuan Ze Univ, Dept Elect Engn, Chungli 32003, Taiwan
[4] China Med Univ, Dept & Inst Hlth Serv Adm, Taichung 406040, Taiwan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 79卷 / 03期
关键词
Human activity recognition; artificial intelligence; support vector machine; random forest; adaptive neuro-fuzzy inference system; convolution neural network; recursive feature elimination; RECURSIVE FEATURE ELIMINATION; SUPPORT VECTOR MACHINE; RANDOM FOREST; CLASSIFICATION; PERFORMANCE;
D O I
10.32604/cmc.2024.050376
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned for its challenging features, supports the framework's resilience and adaptability. The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and random forest (RF), for data training. In contrast, a DL-based model utilizes onedimensional convolution neural network (1dCNN) to automate feature extraction. Furthermore, the recursive feature elimination (RFE) algorithm, which drives an ML-based estimator to eliminate low-participation features, helps identify the optimal features for enhancing model performance. The best accuracies of the ANFIS, SVM, RF, and 1dCNN models with meticulous featuring process achieve around 90%, 96%, 91%, and 93%, respectively. Comparative analysis using the MHEALTH dataset showcases the 1dCNN model's remarkable perfect accuracy (100%), while the RF, SVM, and ANFIS models equipped with selected features achieve accuracies of 99.8%, 99.7%, and 96.5%, respectively. Finally, when applied to the WISDM dataset, the DL-based and ML-based models attain accuracies of 91.4% and 87.3%, respectively, aligning with prior research findings. In conclusion, the proposed framework yields HAR models with commendable performance metrics, exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
引用
收藏
页码:3783 / 3803
页数:21
相关论文
共 50 条
  • [31] Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index
    Abba, Sani Isah
    Pham, Quoc Bao
    Saini, Gaurav
    Linh, Nguyen Thi Thuy
    Ahmed, Ali Najah
    Mohajane, Meriame
    Khaledian, Mohammadreza
    Abdulkadir, Rabiu Aliyu
    Bach, Quang-Vu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (33) : 41524 - 41539
  • [32] Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches
    Hayat, Ahatsham
    Morgado-Dias, Fernando
    Bhuyan, Bikram Pratim
    Tomar, Ravi
    INFORMATION, 2022, 13 (06)
  • [33] Human Activity Recognition from Knee Angle Using Machine Learning Techniques
    Nazari, Farhad
    Nahavandi, Darius
    Mohajer, Navid
    Khosravi, Abbas
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 295 - 300
  • [34] An Experimental Analysis of Deep Learning Models for Human Activity Recognition with Synthetic Data
    Nikolova, Desislava
    Vladimirov, Ivaylo
    Manolova, Agata
    2023 58TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, ICEST, 2023, : 277 - 280
  • [35] Machine learning models for mathematical symbol recognition: A stem to stern literature analysis
    Kukreja, Vinay
    Sakshi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28651 - 28687
  • [36] Machine learning models for mathematical symbol recognition: A stem to stern literature analysis
    Vinay Kukreja
    Multimedia Tools and Applications, 2022, 81 : 28651 - 28687
  • [37] Analysis of Human Activity Recognition by Diffusion Models
    Ukita, Kosuke
    Okita, Tsuyoshi
    COMPANION OF THE 2024 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, UBICOMP COMPANION 2024, 2024, : 458 - 463
  • [38] Performance Comparison of Machine Learning Algorithms for Human Activity Recognition
    Bostan, Berkan
    Senol, Yavuz
    Ascioglu, Gokmen
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [39] An evolving machine learning method for human activity recognition systems
    Andreu, Javier
    Angelov, Plamen
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2013, 4 (02) : 195 - 206
  • [40] An evolving machine learning method for human activity recognition systems
    Javier Andreu
    Plamen Angelov
    Journal of Ambient Intelligence and Humanized Computing, 2013, 4 : 195 - 206