Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

被引:1
|
作者
Lai, Yi-Chun [1 ]
Chiang, Shu-Yin [2 ]
Kan, Yao-Chiang [3 ]
Lin, Hsueh-Chun [4 ]
机构
[1] China Med Univ, Dept Publ Hlth, Taichung 406040, Taiwan
[2] Ming Chuan Univ, Dept Informat & Telecommun Engn, Taoyuan 333, Taiwan
[3] Yuan Ze Univ, Dept Elect Engn, Chungli 32003, Taiwan
[4] China Med Univ, Dept & Inst Hlth Serv Adm, Taichung 406040, Taiwan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 79卷 / 03期
关键词
Human activity recognition; artificial intelligence; support vector machine; random forest; adaptive neuro-fuzzy inference system; convolution neural network; recursive feature elimination; RECURSIVE FEATURE ELIMINATION; SUPPORT VECTOR MACHINE; RANDOM FOREST; CLASSIFICATION; PERFORMANCE;
D O I
10.32604/cmc.2024.050376
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned for its challenging features, supports the framework's resilience and adaptability. The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and random forest (RF), for data training. In contrast, a DL-based model utilizes onedimensional convolution neural network (1dCNN) to automate feature extraction. Furthermore, the recursive feature elimination (RFE) algorithm, which drives an ML-based estimator to eliminate low-participation features, helps identify the optimal features for enhancing model performance. The best accuracies of the ANFIS, SVM, RF, and 1dCNN models with meticulous featuring process achieve around 90%, 96%, 91%, and 93%, respectively. Comparative analysis using the MHEALTH dataset showcases the 1dCNN model's remarkable perfect accuracy (100%), while the RF, SVM, and ANFIS models equipped with selected features achieve accuracies of 99.8%, 99.7%, and 96.5%, respectively. Finally, when applied to the WISDM dataset, the DL-based and ML-based models attain accuracies of 91.4% and 87.3%, respectively, aligning with prior research findings. In conclusion, the proposed framework yields HAR models with commendable performance metrics, exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
引用
收藏
页码:3783 / 3803
页数:21
相关论文
共 50 条
  • [1] A Comparative Study on Missing Data Handling Using Machine Learning for Human Activity Recognition
    Hossain, Tahera
    Inoue, Sozo
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 124 - 129
  • [2] HARTH: A Human Activity Recognition Dataset for Machine Learning
    Logacjov, Aleksej
    Bach, Kerstin
    Kongsvold, Atle
    Bardstu, Hilde Bremseth
    Mork, Paul Jarle
    SENSORS, 2021, 21 (23)
  • [3] Hybrid machine learning approach for human activity recognition
    Azar, Ahmad Taher
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 72 (03) : 231 - 239
  • [4] Machine learning and deep learning models for human activity recognition in security and surveillance: a review
    Waghchaware, Sheetal
    Joshi, Radhika
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4405 - 4436
  • [5] Machine learning regression models for prediction of multiple ionospheric parameters
    Iban, Muzaffer Can
    Senturk, Erman
    ADVANCES IN SPACE RESEARCH, 2022, 69 (03) : 1319 - 1334
  • [6] Accurate Recognition of Coronary Artery Disease by Applying Machine Learning Classifiers
    Das, Utsha
    Srizon, Azmain Yakin
    Hasan, Md Al Mehedi
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [7] Performance Analysis of Machine Learning Algorithms for Smartphone-Based Human Activity Recognition
    N. C. Sri Harsha
    Y. Girish Venkata Sai Anudeep
    Kudarvalli Vikash
    D. Venkata Ratnam
    Wireless Personal Communications, 2021, 121 : 381 - 398
  • [8] Performance Analysis of Machine Learning Algorithms for Smartphone-Based Human Activity Recognition
    Harsha, N. C. Sri
    Anudeep, Y. Girish Venkata Sai
    Vikash, Kudarvalli
    Ratnam, D. Venkata
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (01) : 381 - 398
  • [9] Multiple Machine Learning Based-Chemoinformatics Models for Identification of Histone Acetyl Transferase Inhibitors
    Krishna, Shagun
    Kumar, Sushil
    Singh, Deependra Kumar
    Lakra, Amar Deep
    Banerjee, Dibyendu
    Siddiqi, Mohammad Imran
    MOLECULAR INFORMATICS, 2018, 37 (08)
  • [10] Comparison of Multiple Machine Learning Models Based on Enterprise Revenue Forecasting
    Huang Lei
    Huang Cailan
    2021 ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE (ACCTCS 2021), 2021, : 354 - 359