Imaging Genomics and Multiomics: A Guide for Beginners Starting Radiomics-Based Research

被引:5
作者
Singh, Shiva [1 ]
Mohajer, Bahram [2 ]
Wells, Shane A. [3 ]
Garg, Tushar [2 ]
Hanneman, Kate [4 ]
Takahashi, Takashi [5 ]
Aldandan, Omran [6 ]
McBee, Morgan P. [7 ]
Jawahar, Anugayathri [8 ]
机构
[1] NIH, Radiol & Imaging Sci, Bethesda, MD USA
[2] Johns Hopkins Med, Radiol & Radiol Sci, Baltimore, MD USA
[3] Univ Michigan, Radiol, Ann Arbor, MI USA
[4] Univ Toronto, Med Imaging, Toronto, ON, Canada
[5] Univ Minnesota, Radiol, Minneapolis, MN USA
[6] Imam Abdulrahman Bin Faisal Univ, Coll Med Dammam, Dept Radiol, Eastern, Saudi Arabia
[7] Med Univ South Carolina, Radiol & Radiol Sci, Charleston, SC USA
[8] Northwestern Univ, Radiol, Feinberg Sch Med, 800 Arkes Pavil,676 N St Clair St, Chicago, IL 60611 USA
关键词
Radiomics; Imaging; Genomics; Multiomics; Texture analysis; PERFORMANCE; BIOMARKERS; FRAMEWORK; PHENOTYPE; IMAGES;
D O I
10.1016/j.acra.2024.01.024
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics uses advanced mathematical analysis of pixel-level information from radiologic images to extract existing information in traditional imaging algorithms. It is intended to find imaging biomarkers related to the genomics of tumors or disease patterns that improve medical care by advanced detection of tumor response patterns in tumors and to assess prognosis. Radiomics expands the paradigm of medical imaging to help with diagnosis, management of diseases and prognostication, leveraging image features by extracting information that can be used as imaging biomarkers to predict prognosis and response to treatment. Radiogenomics is an emerging area in radiomics that investigates the association between imaging characteristics and gene expression profiles. There are an increasing number of research publications using different radiomics approaches without a clear consensus on which method works best. We aim to describe the workflow of radiomics along with a guide of what to expect when starting a radiomics-based research project.
引用
收藏
页码:2281 / 2291
页数:11
相关论文
共 63 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[3]   Radiogenomics: bridging imaging and genomics [J].
Bodalal, Zuhir ;
Trebeschi, Stefano ;
Nguyen-Kim, Thi Dan Linh ;
Schats, Winnie ;
Beets-Tan, Regina .
ABDOMINAL RADIOLOGY, 2019, 44 (06) :1960-1984
[4]   The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results [J].
Buvat, Irene ;
Orlhac, Fanny .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (11) :1543-1544
[5]   The patterns and dynamics of genomic instability in metastatic pancreatic cancer [J].
Campbell, Peter J. ;
Yachida, Shinichi ;
Mudie, Laura J. ;
Stephens, Philip J. ;
Pleasance, Erin D. ;
Stebbings, Lucy A. ;
Morsberger, Laura A. ;
Latimer, Calli ;
McLaren, Stuart ;
Lin, Meng-Lay ;
McBride, David J. ;
Varela, Ignacio ;
Nik-Zainal, Serena A. ;
Leroy, Catherine ;
Jia, Mingming ;
Menzies, Andrew ;
Butler, Adam P. ;
Teague, Jon W. ;
Griffin, Constance A. ;
Burton, John ;
Swerdlow, Harold ;
Quail, Michael A. ;
Stratton, Michael R. ;
Iacobuzio-Donahue, Christine ;
Futreal, P. Andrew .
NATURE, 2010, 467 (7319) :1109-1113
[6]   Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII Radiomics Auditing Group Initiative [J].
Cannella, Roberto ;
Vernuccio, Federica ;
Klontzas, Michail E. ;
Ponsiglione, Andrea ;
Petrash, Ekaterina ;
Ugga, Lorenzo ;
dos Santos, Daniel Pinto ;
Cuocolo, Renato .
INSIGHTS INTO IMAGING, 2023, 14 (01)
[7]  
Chang LF, 2020, Arxiv, DOI arXiv:2009.00908
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[10]   Prostate MRI technical parameters standardization: A systematic review on adherence to PI-RADSv2 acquisition protocol [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Verde, Francesco ;
Ventimiglia, Antonio ;
Romeo, Valeria ;
Petretta, Mario ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 120