GAUSSN: Bayesian time-delay estimation for strongly lensed supernovae

被引:0
|
作者
Hayes, Erin E. [1 ]
Thorp, Stephen [2 ]
Mandel, Kaisey S. [1 ,3 ]
Arendse, Nikki [2 ]
Grayling, Matthew [1 ]
Dhawan, Suhail [1 ]
机构
[1] Inst Astron, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England
[2] Stockholm Univ, AlbaNova Univ Ctr, Oskar Klein Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[3] Univ Cambridge, DPMMS, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
gravitational lensing: micro; gravitational lensing: strong; methods: statistical; supernovae: general; supernovae: individual: SN Refsdal; distance scale; PHOTOMETRIC CLASSIFICATION; HUBBLE CONSTANT; MULTIPLE IMAGES; IA SUPERNOVAE; COSMOGRAIL; GALAXY; SIMULATIONS; MODEL; MAGNIFICATION; REAPPEARANCE;
D O I
10.1093/mnras/stae1086
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present gausSN, a Bayesian semiparametric Gaussian Process (GP) model for time-delay estimation with resolved systems of gravitationally lensed supernovae (glSNe). gausSN models the underlying light curve non-parametrically using a GP. Without assuming a template light curve for each SN type, gausSN fits for the time delays of all images using data in any number of wavelength filters simultaneously. We also introduce a novel time-varying magnification model to capture the effects of microlensing alongside time-delay estimation. In this analysis, we model the time-varying relative magnification as a sigmoid function, as well as a constant for comparison to existing time-delay estimation approaches. We demonstrate that gausSN provides robust time-delay estimates for simulations of glSNe from the Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory's Legacy Survey of Space and Time (Rubin-LSST). We find that up to 43.6 per cent of time-delay estimates from Roman and 52.9 per cent from Rubin-LSST have fractional errors of less than 5 per cent. We then apply gausSN to SN Refsdal and find the time delay for the fifth image is consistent with the original analysis, regardless of microlensing treatment. Therefore, gausSN maintains the level of precision and accuracy achieved by existing time-delay extraction methods with fewer assumptions about the underlying shape of the light curve than template-based approaches, while incorporating microlensing into the statistical error budget. gausSN is scalable for time-delay cosmography analyses given current projections of glSNe discovery rates from Rubin-LSST and Roman.
引用
收藏
页码:3942 / 3963
页数:22
相关论文
共 50 条
  • [1] Time-delay estimation in unresolved lensed quasars
    Biggio, L.
    Domi, A.
    Tosi, S.
    Vernardos, G.
    Ricci, D.
    Paganin, L.
    Bracco, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (04) : 5665 - 5672
  • [2] HOLISMOKES VII. Time-delay measurement of strongly lensed Type Ia supernovae using machine learning
    Huber, S.
    Suyu, S. H.
    Ghoshdastidar, D.
    Taubenberger, S.
    Bonvin, V
    Chan, J. H. H.
    Kromer, M.
    Noebauer, U. M.
    Sim, S. A.
    Leal-Taixe, L.
    ASTRONOMY & ASTROPHYSICS, 2022, 658
  • [3] A BAYESIAN-APPROACH TO TIME-DELAY ESTIMATION
    KENEFIC, RJ
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (03): : 611 - 614
  • [4] HOLISMOKES XII. Time-delay measurements of strongly lensed Type Ia supernovae using a long short-term memory network
    Huber, S.
    Suyu, S. H.
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [5] Impact of the 3D source geometry on time-delay measurements of lensed type-Ia supernovae
    Bonvin, V
    Tihhonova, O.
    Millon, M.
    Chan, J. H-H
    Savary, E.
    Huber, S.
    Courbin, F.
    ASTRONOMY & ASTROPHYSICS, 2019, 621
  • [6] Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements
    Huber, S.
    Suyu, S. H.
    Noebauer, U. M.
    Bonvin, V.
    Rothchild, D.
    Chan, J. H. H.
    Awan, H.
    Courbin, F.
    Kromer, M.
    Marshall, P.
    Oguri, M.
    Ribeiro, T.
    ASTRONOMY & ASTROPHYSICS, 2019, 631
  • [7] Multimodel Bayesian estimation for LPV time-delay systems with incomplete observations
    Liu, Xinpeng
    Yang, Xianqiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (06):
  • [8] Time-delay estimation in mixtures
    Yeredor, A
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 237 - 240
  • [9] COHERENCE AND TIME-DELAY ESTIMATION
    CARTER, GC
    PROCEEDINGS OF THE IEEE, 1987, 75 (02) : 236 - 255
  • [10] TIME-DELAY IN ESTIMATION OF ANGLES
    ROSS, DA
    PERCEPTUAL AND MOTOR SKILLS, 1976, 42 (02) : 625 - 626