GAUSSN: Bayesian time-delay estimation for strongly lensed supernovae

被引:1
作者
Hayes, Erin E. [1 ]
Thorp, Stephen [2 ]
Mandel, Kaisey S. [1 ,3 ]
Arendse, Nikki [2 ]
Grayling, Matthew [1 ]
Dhawan, Suhail [1 ]
机构
[1] Inst Astron, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England
[2] Stockholm Univ, AlbaNova Univ Ctr, Oskar Klein Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[3] Univ Cambridge, DPMMS, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
gravitational lensing: micro; gravitational lensing: strong; methods: statistical; supernovae: general; supernovae: individual: SN Refsdal; distance scale; PHOTOMETRIC CLASSIFICATION; HUBBLE CONSTANT; MULTIPLE IMAGES; IA SUPERNOVAE; COSMOGRAIL; GALAXY; SIMULATIONS; MODEL; MAGNIFICATION; REAPPEARANCE;
D O I
10.1093/mnras/stae1086
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present gausSN, a Bayesian semiparametric Gaussian Process (GP) model for time-delay estimation with resolved systems of gravitationally lensed supernovae (glSNe). gausSN models the underlying light curve non-parametrically using a GP. Without assuming a template light curve for each SN type, gausSN fits for the time delays of all images using data in any number of wavelength filters simultaneously. We also introduce a novel time-varying magnification model to capture the effects of microlensing alongside time-delay estimation. In this analysis, we model the time-varying relative magnification as a sigmoid function, as well as a constant for comparison to existing time-delay estimation approaches. We demonstrate that gausSN provides robust time-delay estimates for simulations of glSNe from the Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory's Legacy Survey of Space and Time (Rubin-LSST). We find that up to 43.6 per cent of time-delay estimates from Roman and 52.9 per cent from Rubin-LSST have fractional errors of less than 5 per cent. We then apply gausSN to SN Refsdal and find the time delay for the fifth image is consistent with the original analysis, regardless of microlensing treatment. Therefore, gausSN maintains the level of precision and accuracy achieved by existing time-delay extraction methods with fewer assumptions about the underlying shape of the light curve than template-based approaches, while incorporating microlensing into the statistical error budget. gausSN is scalable for time-delay cosmography analyses given current projections of glSNe discovery rates from Rubin-LSST and Roman.
引用
收藏
页码:3942 / 3963
页数:22
相关论文
共 108 条
[1]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]  
Arendse N, 2024, Arxiv, DOI [arXiv:2312.04621, DOI 10.48550/ARXIV.2312.04621]
[3]   Strongly Lensed Supernova Refsdal: Refining Time Delays Based on the Supernova Explosion Models [J].
Baklanov, Petr ;
Lyskova, Natalia ;
Blinnikov, Sergei ;
Nomoto, Ken'ichi .
ASTROPHYSICAL JOURNAL, 2021, 907 (01)
[4]  
Barbary Kyle, 2023, Zenodo
[5]   The core-collapse rate from the Supernova Legacy Survey [J].
Bazin, G. ;
Palanque-Delabrouille, N. ;
Rich, J. ;
Ruhlmann-Kleider, V. ;
Aubourg, E. ;
Le Guillou, L. ;
Astier, P. ;
Balland, C. ;
Basa, S. ;
Carlberg, R. G. ;
Conley, A. ;
Fouchez, D. ;
Guy, J. ;
Hardin, D. ;
Hook, I. M. ;
Howell, D. A. ;
Pain, R. ;
Perrett, K. ;
Pritchet, C. J. ;
Regnault, N. ;
Sullivan, M. ;
Antilogus, P. ;
Arsenijevic, V. ;
Baumont, S. ;
Fabbro, S. ;
Le Du, J. ;
Lidman, C. ;
Mouchet, M. ;
Mourao, A. ;
Walker, E. S. .
ASTRONOMY & ASTROPHYSICS, 2009, 499 (03) :653-660
[6]   TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles [J].
Birrer, S. ;
Shajib, A. J. ;
Galan, A. ;
Millon, M. ;
Treu, T. ;
Agnello, A. ;
Auger, M. ;
Chen, G. C. -F. ;
Christensen, L. ;
Collett, T. ;
Courbin, F. ;
Fassnacht, C. D. ;
Koopmans, L. V. E. ;
Marshall, P. J. ;
Park, J. -W. ;
Rusu, C. E. ;
Sluse, D. ;
Spiniello, C. ;
Suyu, S. H. ;
Wagner-Carena, S. ;
Wong, K. C. ;
Barnabe, M. ;
Bolton, A. S. ;
Czoske, O. ;
Ding, X. ;
Frieman, J. A. ;
Van de Vyvere, L. .
ASTRONOMY & ASTROPHYSICS, 2020, 643
[7]  
Birrer S., 2021, J. Open Source Softw, V6, P3283, DOI DOI 10.21105/JOSS.03283
[8]   The Hubble Constant from Strongly Lensed Supernovae with Standardizable Magnifications [J].
Birrer, Simon ;
Dhawan, Suhail ;
Shajib, Anowar J. .
ASTROPHYSICAL JOURNAL, 2022, 924 (01)
[9]   lenstronomy: Multi-purpose gravitational lens modelling software package [J].
Birrer, Simon ;
Amara, Adam .
PHYSICS OF THE DARK UNIVERSE, 2018, 22 :189-201
[10]  
Biswas Rahul, 2019, Zenodo