Multiconverter System Design for Fuel Cell Buffering and Diagnostics Under UAV Load Profiles

被引:16
作者
Cooley, John J. [1 ]
Lindahl, Peter [2 ]
Zimmerman, Clarissa L. [3 ]
Cornachione, Matthew [4 ]
Jordan, Grant [5 ]
Shaw, Steven R. [6 ]
Leeb, Steven B. [3 ]
机构
[1] FastCAP Syst Inc, Boston, MA 02210 USA
[2] Blackmore Energy LLC, Bozeman, MT 59717 USA
[3] MIT, Cambridge, MA 02139 USA
[4] Rocky Mt Power, Salt Lake City, UT 84111 USA
[5] Univ Calif San Diego, San Diego, CA 92093 USA
[6] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
关键词
Battery; extra element theorem; fuel cell; hybrid; input filter; Middlebrook; multiconverter; multisource; unmanned aerial vehicle (UAV); DC-DC CONVERTER; HIGH-EFFICIENCY; IMPLEMENTATION; INVERTER;
D O I
10.1109/TPEL.2013.2274600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a multisource, multiconverter power system for electrically propelled unmanned aerial vehicles (UAVs) with a focus on promoting fuel cell health. Linearized multiconverter system analysis and the two extra element theorem (2EET) inform a system design for fuel cell current buffering and integral diagnostics. Integral diagnostics is in situ impedance spectroscopy achieved by controlling the power system to superpose a frequency-swept excitation current at the fuel cell terminals. An experimental system demonstrates hybridization of a solid-oxide fuel cell (SOFC) with a lead-acid battery having suitable current buffering and integral diagnostics performance under UAV load profiles. Experimental behavior is demonstrated with an electrically emulated SOFC stack or "reference simulator." Impedance spectroscopy data measured during run-time clearly indicate both degradation and recovery phenomena in the SOFC.
引用
收藏
页码:3232 / 3244
页数:13
相关论文
共 28 条
[1]   A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles [J].
Cao, Jian ;
Emadi, Ali .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (01) :122-132
[2]   A parallel-hybrid drive-train for propulsion of a small scooter [J].
Ceraolo, Massimo ;
Caleo, Alessandro ;
Capozzella, Paolo ;
Marcacci, Maurizio ;
Carmignani, Luca ;
Pallottini, Alberto .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2006, 21 (03) :768-778
[3]  
Cooley J. J., 2011, THESIS MIT CAMBRIDGE
[4]   Three-port bidirectional converter for hybrid fuel cell systems [J].
Duarte, Jorge L. ;
Hendrix, Marcel ;
Simoes, Marcelo Godoy .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (02) :480-487
[5]   Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems [J].
Emadi, Ali ;
Williamson, Sheldon S. ;
Khaligh, Alireza .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2006, 21 (03) :567-577
[6]  
Erickson R.W., 2007, Fundamentals of power electronics
[7]   Analysis, Modeling, and Implementation of a Multidevice Interleaved DC/DC Converter for Fuel Cell Hybrid Electric Vehicles [J].
Hegazy, Omar ;
Van Mierlo, Joeri ;
Lataire, Philippe .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (11) :4445-4458
[8]   A Single-Stage Fuel Cell Energy System Based on a Buck-Boost Inverter with a Backup Energy Storage Unit [J].
Jang, Minsoo ;
Ciobotaru, Mihai ;
Agelidis, Vassilios G. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (06) :2825-2834
[9]   Multiport Power Electronic Interface-Concept, Modeling, and Design [J].
Jiang, Wei ;
Fahimi, Babak .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (07) :1890-1900
[10]   Flexible multiobjective control of power converter in active hybrid fuel cell/battery power sources [J].
Jiang, ZH ;
Gao, LJ ;
Dougal, RA .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2005, 20 (01) :244-253