Semi-Automatic Ground Truth Trajectory Estimation and Smoothing using Roadside Cameras

被引:0
作者
Fleck, Tobias [1 ,2 ]
Zipfl, Maximilian [1 ,2 ]
Zoeller, J. Marius [1 ,2 ]
机构
[1] FZI Res Ctr Informat Technol, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Karlsruhe, Germany
来源
2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC | 2023年
关键词
ground truth data; labeling; roadside camera sensor; estimation and smoothing; autonomous driving; traffic surveillance; trajectory estimation; VISION;
D O I
10.1109/ITSC57777.2023.10422115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High precision trajectory data is crucial for the validation and verification of algorithms for automated driving. For instance, ego-vehicle-localization algorithms, traffic prediction, traffic scene assessment and other components profit from highly accurate trajectory data for evaluation and bench-marking. In this work we present a ground truth data generation pipeline that is able to produce trajectories of traffic participants in a semi-automated process from static roadside cameras. Our approach consists of an assisted manual labeling step, homography projection, followed by feature computation, state estimation and trajectory smoothing using Rauch-Tung-Striebel Smoothers (RTS). We evaluate our approach in a field experiment and compare the produced trajectories to a commercial high precision (GNSS/INS) system, where we reach a mean position error of 1.16m and a mean speed error of 0.73m/s over seven driving sequences. For relative object distances below 40m to the camera origin, position errors are below 0.41m and the respective speed error is below 0.30m/s.
引用
收藏
页码:4577 / 4583
页数:7
相关论文
共 15 条
  • [1] Bock J., 2019, ARXIV191107602
  • [2] Caesar H., 2020, ARXIV190311027CSSTAT
  • [3] Chang M.-F., 2019, ARXIV191102620CS
  • [4] Clausse A, 2019, IEEE INT VEH SYM, P2391, DOI 10.1109/IVS.2019.8814095
  • [5] A Survey of Vision-Based Traffic Monitoring of Road Intersections
    Datondji, Sokemi Rene Emmanuel
    Dupuis, Yohan
    Subirats, Peggy
    Vasseur, Pascal
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (10) : 2681 - 2698
  • [6] Fleck T, 2020, IEEE INT VEH SYM, P1337, DOI 10.1109/IV47402.2020.9304620
  • [7] Towards Large Scale Urban Traffic Reference Data: Smart Infrastructure in the Test Area Autonomous Driving Baden-Wurttemberg
    Fleck, Tobias
    Daaboul, Karam
    Weber, Michael
    Schoerner, Philip
    Wehmer, Marek
    Doll, Jens
    Orf, Stefan
    Sussmann, Nico
    Hubschneider, Christian
    Zofka, Marc Rene
    Kuhnt, Florian
    Kohlhaas, Ralf
    Baumgart, Ingmar
    Zoellner, Raoul
    Zoellner, J. Marius
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 15, IAS-15, 2019, 867 : 964 - 982
  • [8] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [9] Hartley R., 2003, MULTIPLE VIEW GEOMET, DOI 10.1016/S0143-8166(01)00145-2
  • [10] Krajewski R, 2018, IEEE INT C INTELL TR, P2118, DOI 10.1109/ITSC.2018.8569552