Federated Learning for Decentralized DDoS Attack Detection in IoT Networks (vol 12, pg 42357, 2024)

被引:0
作者
Alhasawi, Yaser [1 ]
Alghamdi, Salem [2 ]
机构
[1] KAU, Jeddah 21589, Saudi Arabia
[2] Inst Publ Adm, Riyadh, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Federated learning; Denial-of-service attack;
D O I
10.1109/ACCESS.2024.3430222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Presents a discussion, comment or reply to the paper, Corrections to "Federated Learning for Decentralized DDoS Attack Detection in IoT Networks".
引用
收藏
页码:125571 / 125571
页数:1
相关论文
共 50 条
[41]   Collaborative Federated Learning for 6G With a Deep Reinforcement Learning-Based Controlling Mechanism: A DDoS Attack Detection Scenario [J].
Kianpisheh, Somayeh ;
Taleb, Tarik .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04) :4731-4749
[42]   FusionSec-IoT: A Federated Learning-Based Intrusion Detection System for Enhancing Security in IoT Networks [J].
Singh, Jatinder Pal ;
Kazmi, Rafaqat .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) :157-169
[43]   Federated Learning of Explainable AI(FedXAI) for deep learning-based intrusion detection in IoT networks [J].
Kalakoti, Rajesh ;
Nomm, Sven ;
Bahsi, Hayretdin .
COMPUTER NETWORKS, 2025, 270
[44]   DDoS Attack Detection via Privacy-aware Federated Learning and Collaborative Mitigation in Multi-domain Cyber Infrastructures [J].
Dimolianis, Marinos ;
Kalogeras, Dimitrios K. ;
Kostopoulos, Nikos ;
Maglaris, Vasilis .
PROCEEDINGS OF THE 2022 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (IEEE CLOUDNET 2022), 2022, :118-125
[45]   Federated Learning Framework Based on Distributed Storage and Diffusion Model for Intrusion Detection on IoT Networks [J].
Manzano, Ricardo ;
Zaman, Marzia ;
Upadhyay, Darshana ;
Goel, Nishith ;
Sampalli, Srinivas .
IEEE ACCESS, 2025, 13 :79571-79595
[46]   Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection [J].
Lei, Ting .
TELECOMMUNICATION SYSTEMS, 2025, 88 (01)
[47]   Privacy-preserving intrusion detection with federated learning: enhancing privacy and efficiency in IoT networks [J].
Sharma, Hemant ;
Yadav, Gyan Singh .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
[48]   FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [J].
Sun, Shihua ;
Sharma, Pragya ;
Nwodo, Kenechukwu ;
Stavrou, Angelos ;
Wang, Haining .
INFORMATION SECURITY, PT II, ISC 2024, 2025, 15258 :286-306
[49]   Federated Learning-Based Intrusion Detection in the Context of IIoT Networks: Poisoning Attack and Defense [J].
Nguyen Chi Vy ;
Nguyen Huu Quyen ;
Phan The Duy ;
Van-Hau Pham .
NETWORK AND SYSTEM SECURITY, NSS 2021, 2021, 13041 :131-147
[50]   An Abnormal Traffic Detection Method for IoT Devices Based on Federated Learning and Depthwise Separable Convolutional Neural Networks [J].
Xia, Qinyu ;
Dong, Shi ;
Peng, Tao .
2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,