Virtual Sensor for Estimating the Strain-Hardening Rate of Austenitic Stainless Steels Using a Machine Learning Approach

被引:2
作者
Contreras-Fortes, Julia [1 ,2 ]
Rodriguez-Garcia, M. Inmaculada [3 ]
Sales, David L. [2 ]
Sanchez-Miranda, Rocio [1 ]
Almagro, Juan F. [1 ]
Turias, Ignacio [3 ]
机构
[1] Acerinox Europa SAU, Lab & Res Sect, Tech Dept, Los Barrios 11379, Spain
[2] Univ Cadiz, Algeciras Sch Engn & Technol, Dept Mat Sci Met Engn & Inorgan Chem, INNANOMAT,IMEYMAT, Ramon Puyol Avda, Algeciras 11202, Spain
[3] Univ Cadiz, Algeciras Sch Engn & Technol, Dept Comp Sci Engn, MIS Grp, Ramon Puyol Avda, Algeciras 11202, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 13期
关键词
austenitic stainless steels; cold working; strain-hardening rate; cold-rolling curves; multiple linear regression; virtual sensor; machine learning; MECHANICAL-PROPERTIES; INDUCED MARTENSITE; COLD-WORKING; MICROSTRUCTURE; NITROGEN;
D O I
10.3390/app14135508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces a Multiple Linear Regression (MLR) model that functions as a virtual sensor for estimating the strain-hardening rate of austenitic stainless steels, represented by the Hardening Rate of Hot rolled and annealed Stainless steel sheet (HRHS) parameter. The model correlates tensile strength (Rm) with cold thickness reduction and chemical composition, evidencing a robust linear relationship with an R-coefficient above 0.9800 for most samples. Key variables influencing the HRHS value include Cr, Mo, Si, Ni, and Nb, with the MLR model achieving a correlation coefficient of 0.9983. The Leave-One-Out Cross-Validation confirms the model's generalization for test examples, consistently yielding high R-values and low mean squared errors. Additionally, a simplified HRHS version is proposed for instances where complete chemical analyses are not feasible, offering a practical alternative with minimal error increase. The research demonstrates the potential of linear regression as a virtual sensor linking cold strain hardening to chemical composition, providing a cost-effective tool for assessing strain hardening behaviour across various austenitic grades. The HRHS parameter significantly aids in the understanding and optimization of steel behaviour during cold forming, offering valuable insights for the design of new steel grades and processing conditions.
引用
收藏
页数:12
相关论文
共 50 条
[21]   In-situ microtomography image segmentation for characterizing strain-hardening cementitious composites under tension using machine learning [J].
Xu, Ke ;
Jin, Qingxu ;
Li, Jiaqi ;
Ushizima, Daniela M. ;
Li, Victor C. ;
Kurtis, Kimberly E. ;
Monteiro, Paulo J. M. .
CEMENT AND CONCRETE RESEARCH, 2023, 169
[22]   Study of the Constitutive Equations of Austenitic Stainless Steels under High Strain Rate Loading Considering Phase Transformation Effects [J].
Yang, Wenshuai ;
Shen, Yachao ;
Chen, Shuli ;
Wang, Xueya ;
Shu, Dianqiang ;
Wang, Huanran .
JOM, 2025, 77 (05) :2875-2887
[23]   A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels [J].
Chaudhary, N. ;
Abu-Odeh, A. ;
Karaman, I. ;
Arroyave, R. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (18) :11048-11076
[24]   Predicting stacking fault energy in austenitic stainless steels via physical metallurgy-based machine learning approaches [J].
Song, Longyu ;
Wang, Chenchong ;
Li, Yizhuang ;
Wei, Xiaolu .
JOURNAL OF MATERIALS INFORMATICS, 2025, 5 (01)
[25]   Machine learning approach for simultaneous measurement of strain and temperature using FBG sensor [J].
Dey, Koustav ;
Vangety, Nikhil ;
Roy, Sourabh .
SENSORS AND ACTUATORS A-PHYSICAL, 2022, 333
[26]   The strain-rate dependence of the Hall-Petch effect in two austenitic stainless steels with different stacking fault energies [J].
Astafurov, Sergey V. ;
Maier, Galina G. ;
Melnikov, Evgenii V. ;
Moskvina, Valentina A. ;
Panchenko, Marina Yu. ;
Astafurova, Elena G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 756 :365-372
[27]   Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures [J].
Khodabakhshi, F. ;
Farshidianfar, M. H. ;
Gerlich, A. P. ;
Nosko, M. ;
Trembosova, V. ;
Khajepour, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 756 :545-561
[28]   Predicting the Irradiation Swelling of Austenitic and Ferritic/Martensitic Steels, Based on the Coupled Model of Machine Learning and Rate Theory [J].
Zhu, Xiaohan ;
Li, Xiaochen ;
Zheng, Mingjie .
METALS, 2022, 12 (04)
[29]   Effects of strain rate on tensile ductility in Cu-added stable Fe-Cr-Ni-based austenitic stainless steels [J].
Cho, Hyung-Jun ;
Cho, Yeonggeun ;
Gu, Gang Hee ;
Kim, Hyoung Seop ;
Lee, Sunghak ;
Kim, Sung-Joon .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
[30]   Virtual Sensor Based on a Deep Learning Approach for Estimating Efficiency in Chillers [J].
Alonso, Serafin ;
Moran, Antonio ;
Perez, Daniel ;
Reguera, Perfecto ;
Diaz, Ignacio ;
Dominguez, Manuel .
ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 :307-319