Virtual Sensor for Estimating the Strain-Hardening Rate of Austenitic Stainless Steels Using a Machine Learning Approach

被引:2
|
作者
Contreras-Fortes, Julia [1 ,2 ]
Rodriguez-Garcia, M. Inmaculada [3 ]
Sales, David L. [2 ]
Sanchez-Miranda, Rocio [1 ]
Almagro, Juan F. [1 ]
Turias, Ignacio [3 ]
机构
[1] Acerinox Europa SAU, Lab & Res Sect, Tech Dept, Los Barrios 11379, Spain
[2] Univ Cadiz, Algeciras Sch Engn & Technol, Dept Mat Sci Met Engn & Inorgan Chem, INNANOMAT,IMEYMAT, Ramon Puyol Avda, Algeciras 11202, Spain
[3] Univ Cadiz, Algeciras Sch Engn & Technol, Dept Comp Sci Engn, MIS Grp, Ramon Puyol Avda, Algeciras 11202, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 13期
关键词
austenitic stainless steels; cold working; strain-hardening rate; cold-rolling curves; multiple linear regression; virtual sensor; machine learning; MECHANICAL-PROPERTIES; INDUCED MARTENSITE; COLD-WORKING; MICROSTRUCTURE; NITROGEN;
D O I
10.3390/app14135508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces a Multiple Linear Regression (MLR) model that functions as a virtual sensor for estimating the strain-hardening rate of austenitic stainless steels, represented by the Hardening Rate of Hot rolled and annealed Stainless steel sheet (HRHS) parameter. The model correlates tensile strength (Rm) with cold thickness reduction and chemical composition, evidencing a robust linear relationship with an R-coefficient above 0.9800 for most samples. Key variables influencing the HRHS value include Cr, Mo, Si, Ni, and Nb, with the MLR model achieving a correlation coefficient of 0.9983. The Leave-One-Out Cross-Validation confirms the model's generalization for test examples, consistently yielding high R-values and low mean squared errors. Additionally, a simplified HRHS version is proposed for instances where complete chemical analyses are not feasible, offering a practical alternative with minimal error increase. The research demonstrates the potential of linear regression as a virtual sensor linking cold strain hardening to chemical composition, providing a cost-effective tool for assessing strain hardening behaviour across various austenitic grades. The HRHS parameter significantly aids in the understanding and optimization of steel behaviour during cold forming, offering valuable insights for the design of new steel grades and processing conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Influence of ageing on kinetics and strain-hardening behaviour of duplex stainless steels
    Vasanth, Shamanth
    Krishna, Hemanth
    Sonnappa, Devaraj
    Nithin, Hiriyalu Shivegowda
    Kataraki, Pramod Kumar
    EMERGING MATERIALS RESEARCH, 2019, 8 (04) : 588 - 597
  • [2] The Martensitic Transformation and Strain-Hardening Behavior of Austenitic Steels During Fatigue and Tensile Loading
    Lehnhoff, G. R.
    Findley, K. O.
    JOM, 2014, 66 (05) : 756 - 764
  • [3] Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels
    Byun, TS
    Hashimoto, N
    Farrell, K
    ACTA MATERIALIA, 2004, 52 (13) : 3889 - 3899
  • [4] Mechanical Properties and Strain-Hardening Models of Supermartensitic Stainless Steels Alloyed to Nitrogen and Vanadium
    Chales, R.
    Cardoso, A. S. M.
    Garcia, P. S. P.
    Almeida, B. B.
    Igreja, H. R.
    Noris, L. F.
    Pardal, J. M.
    Tavares, S. S. M.
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2023, 26
  • [5] Mechanical Properties and Strain-Hardening Models of Supermartensitic Stainless Steels Alloyed to Nitrogen and Vanadium
    Chales R.
    Cardoso A.S.M.
    Garcia P.S.P.
    Almeida B.B.
    Igreja H.R.
    Noris L.F.
    Pardal J.M.
    Tavares S.S.M.
    Materials Research, 2023, 26
  • [6] Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning
    Mu, Wangzhong
    Rahaman, Moshiour
    Rios, Felix L.
    Odqvist, Joakim
    Hedstrom, Peter
    MATERIALS & DESIGN, 2021, 197
  • [7] A MACHINE LEARNING APPROACH FOR STRESS-RUPTURE PREDICTION OF HIGH TEMPERATURE AUSTENITIC STAINLESS STEELS
    Hossain, Md Abir
    Mireles, Adan J.
    Stewart, Calvin M.
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 7, 2022,
  • [8] Effect of temperature and strain rate on tensile flow and work hardening behaviour of a Ti modified austenitic stainless
    Sivaprasad, PV
    Venugopal, S
    Venkadesan, S
    MATERIALS SCIENCE AND TECHNOLOGY, 2004, 20 (03) : 350 - 356
  • [9] EFFECT OF STRAIN RATE ON STRAIN INDUCED α′-MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS
    Liu Wei
    Li Zhibin
    Wang Xiang
    Zou Hua
    Wang Lixin
    ACTA METALLURGICA SINICA, 2009, 45 (03) : 285 - 291
  • [10] The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels
    Luo, Z. C.
    Huang, M. X.
    SCRIPTA MATERIALIA, 2020, 178 : 264 - 268