MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis

被引:2
作者
Wang, Xiao [1 ]
Liang, Shuang [1 ]
Yang, Wenqi [1 ]
Yu, Ke [1 ]
Liang, Fei [1 ]
Zhao, Bing [1 ]
Zhu, Xiang [2 ]
Zhou, Chao [3 ]
Mur, Luis A. J. [4 ]
Roberts, Jeremy A. [5 ]
Zhang, Junli [1 ]
Zhang, Xuebin [1 ]
机构
[1] Henan Univ, Sch Life Sci, State Key Lab Crop Stress Adaptat & Improvement, Henan Joint Int Lab Crop Multiomics Res, Kaifeng 475004, Peoples R China
[2] Thermo Fisher Sci, Shanghai 201206, Peoples R China
[3] Waters Technol Shanghai Ltd, Shanghai 201206, Peoples R China
[4] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3FL, Wales
[5] Univ Plymouth, Fac Sci & Engn, Sch Biol & Marine Sci, Plymouth PL4 8AA, England
基金
中国国家自然科学基金; 英国生物技术与生命科学研究理事会;
关键词
data mining; iterative WGCNA; metabolomics; pipeline; shinyapp; F-BOX PROTEINS; BIOSYNTHESIS;
D O I
10.1111/jipb.13774
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The utilization of metabolomics approaches to explore the metabolic mechanisms underlying plant fitness and adaptation to dynamic environments is growing, highlighting the need for an efficient and user-friendly toolkit tailored for analyzing the extensive datasets generated by metabolomics studies. Current protocols for metabolome data analysis often struggle with handling large-scale datasets or require programming skills. To address this, we present MetMiner (), a user-friendly, full-functionality pipeline specifically designed for plant metabolomics data analysis. Built on R shiny, MetMiner can be deployed on servers to utilize additional computational resources for processing large-scale datasets. MetMiner ensures transparency, traceability, and reproducibility throughout the analytical process. Its intuitive interface provides robust data interaction and graphical capabilities, enabling users without prior programming skills to engage deeply in data analysis. Additionally, we constructed and integrated a plant-specific mass spectrometry database into the MetMiner pipeline to optimize metabolite annotation. We have also developed MDAtoolkits, which include a complete set of tools for statistical analysis, metabolite classification, and enrichment analysis, to facilitate the mining of biological meaning from the datasets. Moreover, we propose an iterative weighted gene co-expression network analysis strategy for efficient biomarker metabolite screening in large-scale metabolomics data mining. In two case studies, we validated MetMiner's efficiency in data mining and robustness in metabolite annotation. Together, the MetMiner pipeline represents a promising solution for plant metabolomics analysis, providing a valuable tool for the scientific community to use with ease. MetMiner, a user-friendly, full-functionality pipeline designed for plant metabolomics data analysis, leverages advanced mass spectrometry data processing frameworks, offering robust data interaction capabilities and efficient data mining methods, enabling wet-lab biologists to more easily handle large-scale metabolomics datasets.image
引用
收藏
页码:2329 / 2345
页数:17
相关论文
共 50 条
  • [1] Adusumilli R, 2017, METHODS MOL BIOL, V1550, P339, DOI 10.1007/978-1-4939-6747-6_23
  • [2] The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis
    Beekwilder, Jules
    van Leeuwen, Wessel
    van Dam, Nicole M.
    Bertossi, Monica
    Grandi, Valentina
    Mizzi, Luca
    Soloviev, Mikhail
    Szabados, Laszlo
    Molthoff, Jos W.
    Schipper, Bert
    Verbocht, Hans
    de Vos, Ric C. H.
    Morandini, Piero
    Aarts, Mark G. M.
    Bovy, Arnaud
    [J]. PLOS ONE, 2008, 3 (04):
  • [3] Beeley C., 2016, WEB APPL DEV R USING
  • [4] The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
    Caspi, Ron
    Billington, Richard
    Ferrer, Luciana
    Foerster, Hartmut
    Fulcher, Carol A.
    Keseler, Ingrid M.
    Kothari, Anamika
    Krummenacker, Markus
    Latendresse, Mario
    Mueller, Lukas A.
    Ong, Quang
    Paley, Suzanne
    Subhraveti, Pallavi
    Weaver, Daniel S.
    Karp, Peter D.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D471 - D480
  • [5] TBtools-II: A "one for all, all for one"bioinformatics platform for biological big-data mining
    Chen, Chengjie
    Wu, Ya
    Li, Jiawei
    Wang, Xiao
    Zeng, Zaohai
    Xu, Jing
    Liu, Yuanlong
    Feng, Junting
    Chen, Hao
    He, Yehua
    Xia, Rui
    [J]. MOLECULAR PLANT, 2023, 16 (11) : 1733 - 1742
  • [6] Metabolite discovery through global annotation of untargeted metabolomics data
    Chen, Li
    Lu, Wenyun
    Wang, Lin
    Xing, Xi
    Chen, Ziyang
    Teng, Xin
    Zeng, Xianfeng
    Muscarella, Antonio D.
    Shen, Yihui
    Cowan, Alexis
    McReynolds, Melanie R.
    Kennedy, Brandon J.
    Lato, Ashley M.
    Campagna, Shawn R.
    Singh, Mona
    Rabinowitz, Joshua D.
    [J]. NATURE METHODS, 2021, 18 (11) : 1377 - +
  • [7] A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics
    Chen, Wei
    Gong, Liang
    Guo, Zilong
    Wang, Wensheng
    Zhang, Hongyan
    Liu, Xianqing
    Yu, Sibin
    Xiong, Lizhong
    Luo, Jie
    [J]. MOLECULAR PLANT, 2013, 6 (06) : 1769 - 1780
  • [8] Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection
    Cui, Hongtu
    Chen, Yanghui
    Li, Ke
    Zhan, Rui
    Zhao, Mingming
    Xu, Yangkai
    Lin, Zhiyong
    Fu, Yi
    He, Qihua
    Tang, Paul C.
    Lei, Ienglam
    Zhang, Jifeng
    Li, Chenze
    Sun, Yang
    Zhang, Xinhua
    Horng, Tiffany
    Lu, Hong S.
    Chen, Y. Eugene
    Daugherty, Alan
    Wang, Daowen
    Zheng, Lemin
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 (42) : 4373 - 4385
  • [9] Djoumbou Feunang Yannick, 2016, J Cheminform, V8, P61
  • [10] SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information
    Duhrkop, Kai
    Fleischauer, Markus
    Ludwig, Marcus
    Aksenov, Alexander A.
    Melnik, Alexey V.
    Meusel, Marvin
    Dorrestein, Pieter C.
    Rousu, Juho
    Bocker, Sebastian
    [J]. NATURE METHODS, 2019, 16 (04) : 299 - +