Automatic deep learning detection of overhanging restorations in bitewing radiographs

被引:4
|
作者
Magat, Guldane [1 ]
Altindag, Ali [1 ]
Hatipoglu, Fatma Pertek [2 ]
Hatipoglu, Omer [3 ]
Bayrakdar, Ibrahim Sevki [4 ,5 ,6 ]
Celik, Ozer [7 ,8 ]
Orhan, Kaan [8 ,9 ]
机构
[1] Necmettin Erbakan Univ, Necmettin Erbakan Univ Dent Fac, Dept Oral & Maxillofacial Radiol, Fac Dent, TR-42090 Meram, Turkiye
[2] Nigde Omer Halisdemir Univ, Dept Endodont, Nigde, Turkiye
[3] Nigde Omer Halisdemir Univ, Dept Restorat Dent, Nigde, Turkiye
[4] Eskisehir Osmangazi Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, TR-26040 Eskiyehir, Turkiye
[5] Eskisehir Osmangazi Univ, Dept Math Comp, Fac Sci, TR-26040 Eskisehir, Turkiye
[6] CranioCatch Co, TR-26040 Eskisehir, Turkiye
[7] Eskisehir Osmangazi Univ, Fac Sci, Dept Math & Comp Sci, TR-26040 Eskisehir, Turkiye
[8] Ankara Univ, Med Design Applicat Res Ctr MEDITAM, TR-06800 Ankara, Turkiye
[9] Ankara Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Mevlana Blvd 19-1, TR-06560 Ankara, Turkiye
关键词
artificial intelligence; bitewing; deep learning; overhanging restoration; PREVALENCE; QUALITY;
D O I
10.1093/dmfr/twae036
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives This study aimed to assess the effectiveness of deep convolutional neural network (CNN) algorithms for the detecting and segmentation of overhanging dental restorations in bitewing radiographs.Methods A total of 1160 anonymized bitewing radiographs were used to progress the artificial intelligence (AI) system for the detection and segmentation of overhanging restorations. The data were then divided into three groups: 80% for training (930 images, 2399 labels), 10% for validation (115 images, 273 labels), and 10% for testing (115 images, 306 labels). A CNN model known as You Only Look Once (YOLOv5) was trained to detect overhanging restorations in bitewing radiographs. After utilizing the remaining 115 radiographs to evaluate the efficacy of the proposed CNN model, the accuracy, sensitivity, precision, F1 score, and area under the receiver operating characteristic curve (AUC) were computed.Results The model demonstrated a precision of 90.9%, a sensitivity of 85.3%, and an F1 score of 88.0%. Furthermore, the model achieved an AUC of 0.859 on the receiver operating characteristic (ROC) curve. The mean average precision (mAP) at an intersection over a union (IoU) threshold of 0.5 was notably high at 0.87.Conclusions The findings suggest that deep CNN algorithms are highly effective in the detection and diagnosis of overhanging dental restorations in bitewing radiographs. The high levels of precision, sensitivity, and F1 score, along with the significant AUC and mAP values, underscore the potential of these advanced deep learning techniques in revolutionizing dental diagnostic procedures.
引用
收藏
页码:468 / 477
页数:11
相关论文
共 50 条
  • [41] Performance evaluation of a deep learning model for automatic detection and localization of idiopathic osteosclerosis on dental panoramic radiographs
    Melek Tassoker
    Muhammet Üsame Öziç
    Fatma Yuce
    Scientific Reports, 14
  • [42] Automatic Detection of Wrist Fractures From Posteroanterior and Lateral Radiographs: A Deep Learning-Based Approach
    Ebsim, Raja
    Naqvi, Jawad
    Cootes, Timothy F.
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS IN MUSCULOSKELETAL IMAGING, MSKI 2018, 2019, 11404 : 114 - 125
  • [43] Detection of COVID-19 Using Deep Learning Algorithms on Chest Radiographs
    Chiu, Wan Hang Keith
    Vardhanabhuti, Varut
    Poplavskiy, Dmytro
    Yu, Philip Leung Ho
    Du, Richard
    Yap, Alistair Yun Hee
    Zhang, Sailong
    Fong, Ambrose Ho-Tung
    Chin, Thomas Wing-Yan
    Lee, Jonan Chun Yin
    Leung, Siu Ting
    Lo, Christine Shing Yen
    Lui, Macy Mei-Sze
    Fang, Benjamin Xin Hao
    Ng, Ming-Yen
    Kuo, Michael D.
    JOURNAL OF THORACIC IMAGING, 2020, 35 (06) : 369 - 376
  • [44] Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods
    Ureten, Kemal
    Arslan, Tayfun
    Gultekin, Korcan Emre
    Demir, Ayse Nur Demirgoz
    Ozer, Hafsa Feyza
    Bilgili, Yasemin
    SKELETAL RADIOLOGY, 2020, 49 (09) : 1369 - 1374
  • [45] Detection of Mucous Retention Cysts Using Deep Learning Methods on Panoramic Radiographs
    Baybars, Suemeyye C. O. S. G. U. N.
    Danaci, Cagla
    Tuncer, Seda A. R. S. L. A. N.
    DUZCE MEDICAL JOURNAL, 2024, 26 (03) : 203 - 208
  • [46] Automatic identification of individuals using deep learning method on panoramic radiographs
    Enomoto, Akifumi
    Lee, Atsushi-Doksa
    Sukedai, Miho
    Shimoide, Takeshi
    Katada, Ryuichi
    Sugimoto, Kana
    Matsumoto, Hiroshi
    JOURNAL OF DENTAL SCIENCES, 2023, 18 (02) : 696 - 701
  • [48] Development and Validation of a Deep Learning-based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
    Hwang, Eui Jin
    Park, Sunggyun
    Jin, Kwang-Nam
    Kim, Jung Im
    Choi, So Young
    Lee, Jong Hyuk
    Goo, Jin Mo
    Aum, Jaehong
    Yim, Jae-Joon
    Park, Chang Min
    Kim, Dong Hyeon
    Kim, Dong Hyeon
    Woo, Sungmin
    Choi, Wonseok
    Hwang, In Pyung
    Song, Yong Sub
    Lim, Jiyeon
    Kim, Hyungjin
    Wi, Jae Yeon
    Oh, Su Suk
    Kang, Mi-Jin
    Woo, Chris
    CLINICAL INFECTIOUS DISEASES, 2019, 69 (05) : 739 - 747
  • [49] Deep Learning-Based Hip Detection in Pelvic Radiographs
    Loureiro, Catia
    Filipe, Vitor
    Franco-Goncalo, Pedro
    Pereira, Ana Ines
    Colaco, Bruno
    Alves-Pimenta, Sofia
    Ginja, Mario
    Goncalves, Lio
    OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023, 2024, 1982 : 108 - 117
  • [50] Musculoskeletal abnormality detection in humerus radiographs using deep learning
    Chawla N.
    Kapoor N.
    Revue d'Intelligence Artificielle, 2020, 34 (02) : 209 - 214