Characterizing the distinct imaging phenotypes, clinical behavior, and genetic vulnerability of brain maturational subtypes in mood disorders

被引:0
作者
Zheng, Junjie [1 ,2 ]
Zong, Xiaofen [3 ]
Tang, Lili [1 ,2 ]
Guo, Huiling [1 ,2 ,4 ]
Zhao, Pengfei [1 ,2 ]
Womer, Fay Y. [5 ]
Zhang, Xizhe [4 ]
Tang, Yanqing [6 ,7 ,8 ,9 ]
Wang, Fei [1 ,2 ,10 ]
机构
[1] Nanjing Med Univ, Affiliated Brain Hosp, Dept Psychiat, Early Intervent Unit, Nanjing, Peoples R China
[2] Nanjing Med Univ, Funct Brain Imaging Inst, Nanjing, Peoples R China
[3] Wuhan Univ, Renmin Hosp, Dept Psychiat, Wuhan, Peoples R China
[4] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing, Peoples R China
[5] Vanderbilt Univ, Med Ctr, Dept Psychiat & Behav Sci, Nashville, TN USA
[6] First Hosp China Med Univ, Dept Psychiat, Shenyang, Peoples R China
[7] First Hosp China Med Univ, Brain Funct Res Sect, Shenyang, Peoples R China
[8] First Hosp China Med Univ, Dept Gerontol, Shenyang, Peoples R China
[9] China Med Univ, Shengjing Hosp, Dept Psychiat, Shenyang, Peoples R China
[10] Nanjing Med Univ, Sch Publ Hlth, Dept Mental Hlth, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
genetic risks; gray matter volume; maturational subtypes; mood disorders; normative modeling; MAJOR DEPRESSIVE DISORDER; NEUROPHYSIOLOGICAL SUBTYPES; MORPHOMETRIC SIMILARITY; ALZHEIMERS-DISEASE; BIPOLAR DISORDER; NORMATIVE MODELS; SCHIZOPHRENIA; RISK; BIOMARKERS; PSYCHOSIS;
D O I
10.1017/S0033291724000886
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background Mood disorders are characterized by great heterogeneity in clinical manifestation. Uncovering such heterogeneity using neuroimaging-based individual biomarkers, clinical behaviors, and genetic risks, might contribute to elucidating the etiology of these diseases and support precision medicine.Methods We recruited 174 drug-na & iuml;ve and drug-free patients with major depressive disorder and bipolar disorder, as well as 404 healthy controls. T1 MRI imaging data, clinical symptoms, and neurocognitive assessments, and genetics were obtained and analyzed. We applied regional gray matter volumes (GMV) and quantile normative modeling to create maturation curves, and then calculated individual deviations to identify subtypes within the patients using hierarchical clustering. We compared the between-subtype differences in GMV deviations, clinical behaviors, cell-specific transcriptomic associations, and polygenic risk scores. We also validated the GMV deviations based subtyping analysis in a replication cohort.Results Two subtypes emerged: subtype 1, characterized by increased GMV deviations in the frontal cortex, cognitive impairment, a higher genetic risk for Alzheimer's disease, and transcriptionally associated with Alzheimer's disease pathways, oligodendrocytes, and endothelial cells; and subtype 2, displaying globally decreased GMV deviations, more severe depressive symptoms, increased genetic vulnerability to major depressive disorder and transcriptionally related to microglia and inhibitory neurons. The distinct patterns of GMV deviations in the frontal, cingulate, and primary motor cortices between subtypes were shown to be replicable.Conclusions Our current results provide vital links between MRI-derived phenotypes, spatial transcriptome, genetic vulnerability, and clinical manifestation, and uncover the heterogeneity of mood disorders in biological and behavioral terms.
引用
收藏
页数:11
相关论文
共 71 条
  • [1] A practical guide to linking brain-wide gene expression and neuroimaging data
    Arnatkeviciute, Aurina
    Fulcher, Ben D.
    Fornito, Alex
    [J]. NEUROIMAGE, 2019, 189 : 353 - 367
  • [2] Brain charts for the human lifespan
    Bethlehem, R. A. I.
    Seidlitz, J.
    White, S. R.
    Vogel, J. W.
    Anderson, K. M.
    Adamson, C.
    Adler, S.
    Alexopoulos, G. S.
    Anagnostou, E.
    Areces-Gonzalez, A.
    Astle, D. E.
    Auyeung, B.
    Ayub, M.
    Bae, J.
    Ball, G.
    Baron-Cohen, S.
    Beare, R.
    Bedford, S. A.
    Benegal, V.
    Beyer, F.
    Blangero, J.
    Blesa Cabez, M.
    Boardman, J. P.
    Borzage, M.
    Bosch-Bayard, J. F.
    Bourke, N.
    Calhoun, V. D.
    Chakravarty, M. M.
    Chen, C.
    Chertavian, C.
    Chetelat, G.
    Chong, Y. S.
    Cole, J. H.
    Corvin, A.
    Costantino, M.
    Courchesne, E.
    Crivello, F.
    Cropley, V. L.
    Crosbie, J.
    Crossley, N.
    Delarue, M.
    Delorme, R.
    Desrivieres, S.
    Devenyi, G. A.
    Di Biase, M. A.
    Dolan, R.
    Donald, K. A.
    Donohoe, G.
    Dunlop, K.
    Edwards, A. D.
    [J]. NATURE, 2022, 604 (7906) : 525 - +
  • [3] GABAergic dysfunction in mood disorders
    Brambilla, P
    Perez, J
    Barale, F
    Schettini, G
    Soares, JC
    [J]. MOLECULAR PSYCHIATRY, 2003, 8 (08) : 721 - 737
  • [4] Modeling Heterogeneous Patients With a Clinical Diagnosis of Schizophrenia With Induced Pluripotent Stem Cells
    Brennand, Kristen J.
    Landek-Salgado, Melissa A.
    Sawa, Akira
    [J]. BIOLOGICAL PSYCHIATRY, 2014, 75 (12) : 936 - 944
  • [5] Depression and risk of developing dementia
    Byers, Amy L.
    Yaffe, Kristine
    [J]. NATURE REVIEWS NEUROLOGY, 2011, 7 (06) : 323 - 331
  • [6] Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness
    Calcia, Marilia A.
    Bonsall, David R.
    Bloomfield, Peter S.
    Selvaraj, Sudhakar
    Barichello, Tatiana
    Howes, Oliver D.
    [J]. PSYCHOPHARMACOLOGY, 2016, 233 (09) : 1637 - 1650
  • [7] The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach
    Cassano, GB
    Rucci, P
    Frank, E
    Fagiolini, A
    Dell'Osso, L
    Shear, MK
    Kupfer, DJ
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2004, 161 (07) : 1264 - 1269
  • [8] Chang M, 2021, MOL PSYCHIATR, V26, P2991, DOI 10.1038/s41380-020-00892-3
  • [9] Chen Li-Zhen, 2021, Psychoradiology, V1, P272, DOI 10.1093/psyrad/kkab022
  • [10] Inflammatory cytokines in and cognitive function of adolescents with first-episode schizophrenia, bipolar disorder, or major depressive disorder
    Chen, Mu-Hong
    Hsu, Ju-Wei
    Huang, Kai-Lin
    Tsai, Shih-Jen
    Tu, Pei-Chi
    Bai, Ya-Mei
    [J]. CNS SPECTRUMS, 2023, 28 (01) : 70 - 77