Multiscale microstructural evolution of Fe-Ni-Al-Ti alloy with high magnetization

被引:1
作者
Chen, Si-Yi [1 ]
Sun, Ji-Bing [1 ]
Wang, Li -Zhu [1 ]
Zhang, Hang-Qian [1 ]
Li, Xu-Ming [1 ]
Cui, Chun -Xiang [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Hebei Key Lab New Funct Mat, 5340 Xiping Rd 1, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Soft magnetic materials; Smelting; Melt spinning; Microstructure; Magnetic properties; TETRAGONALITY; ENHANCEMENT; PERFORMANCE; COERCIVITY; STABILITY;
D O I
10.1016/j.physb.2024.415825
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Fe-15Ni-3Al-1Ti ribbons are produced by melt-spinning the annealed ingots at 10-40 m/s. The annealed ingots consist of Fe3Ni grains and alpha-Fe-type grain boundary phase, forming a columnar grain microstructure in the vertical direction and getting the maximum saturation magnetic polarization (J(s)) of 1.88 +/- 0.03 T in the cross-section. Before and after the annealing, the ribbons form a cellular structure composed of the Fe3Ni intragranular phase and gamma-(Fe, M), Fe7Ni3, or alpha-(Fe, M) cell boundary phases. Formation of enhanced <100> orientation is the primary mechanism for obtaining a high J(s) of 2.35 +/- 0.07 T in the ribbons. The grain and grain boundary size of the ribbons is reduced by the phase transformation induced by annealing at 600 degrees C. The phase transformation processes of the ribbons before and after annealing are as follows: L ->gamma melt spunFe(3)Ni + gamma(1) -> annealed(sic)Fe3Ni + Fe7Ni3 when melt-spinning at a speed of 10-25 m/s, and L ->gamma -> melt spunFe(3)Ni + Fe7Ni3 annealed(sic)Fe3Ni + alpha -(Fe, Ni) at 40 m/s. Finally, the multiscale microstructure evolution models are used to summarize the phase transformation process of the alloys.
引用
收藏
页数:7
相关论文
共 39 条
[1]   High coercivity in heterogeneous Co-rich CoAg very thin films [J].
Butera, A ;
Klemmer, TJ ;
Minor, K ;
Cho, HS ;
Barnard, JA .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (04) :1114-1116
[2]   The Fe-Ni system: Thermodynamic modelling assisted by atomistic calculations [J].
Cacciamani, G. ;
Dinsdale, A. ;
Palumbo, M. ;
Pasturel, A. .
INTERMETALLICS, 2010, 18 (06) :1148-1162
[3]   SOME ASPECTS OF MAGNETIC-PROPERTIES OF NI-FE AND CO-FE ALLOYS [J].
COUDERCHON, G ;
TIERS, JF .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1982, 26 (1-3) :196-214
[4]   50.50 FeNi permalloy with Ti and Cr additions for improved hardness and corrosion resistance [J].
Coutu, L ;
Chaput, L ;
Waeckerle, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 215 :237-239
[5]   Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt%Ni alloy by shape modification [J].
Feng, Yongbao ;
Qiu, Tai .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (16) :2528-2533
[6]   Formation and magnetic properties of nanocrystalline 78.5-permalloy by mechanical alloying [J].
Ghosh, N. C. ;
Das, H. N. ;
Gafur, M. A. ;
Hossain, A. K. M. Akther .
10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 :136-139
[7]   Frequency Dependence of the Coercivity of Soft Magnetic Materials [J].
Groessinger, R. ;
Mehboob, N. ;
Kriegisch, M. ;
Bachmaier, A. ;
Pippan, R. .
IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (04) :1473-1476
[8]   Structural, magnetic and electrical properties of FexNi100-x/Si(100) films [J].
Guechi, N. ;
Bourzami, A. ;
Guittoum, A. ;
Kharmouche, A. ;
Colis, S. ;
Meni, N. .
PHYSICA B-CONDENSED MATTER, 2014, 441 :47-53
[9]   A mechanically strong and ductile soft magnet with extremely low coercivity [J].
Han, Liuliu ;
Maccari, Fernando ;
Souza Filho, Isnaldi R. ;
Peter, Nicolas J. ;
Wei, Ye ;
Gault, Baptiste ;
Gutfleisch, Oliver ;
Li, Zhiming ;
Raabe, Dierk .
NATURE, 2022, 608 (7922) :310-316
[10]  
Ko Soeno M.T., 1974, Iron Steel, V9, P1363