Data-Driven System Analysis of Nonlinear Systems Using Polynomial Approximation

被引:7
|
作者
Martin, Tim [1 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70569 Stuttgart, Germany
关键词
Noise measurement; System dynamics; Nonlinear dynamical systems; Trajectory; Linear matrix inequalities; Control theory; Upper bound; Data-driven system analysis; dissipativity; nonlinear systems; polynomial approximation; VERIFICATION;
D O I
10.1109/TAC.2023.3321212
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of data-driven control of nonlinear systems, many approaches lack of rigorous guarantees, call for nonconvex optimization, or require knowledge of a function basis containing the system dynamics. To tackle these drawbacks, we establish a polynomial representation of nonlinear functions based on a polynomial sector by Taylor's theorem and a set-membership for Taylor polynomials. The latter is obtained from finite noisy samples. By incorporating the measurement noise, the error of polynomial approximation, and potentially given prior knowledge on the structure of the system dynamics, we achieve computationally tractable conditions by sum of squares relaxation to verify dissipativity of nonlinear dynamical systems with rigorous guarantees. The framework is extended by combining multiple Taylor polynomial approximations, which yields a less conservative piecewise polynomial system representation. The proposed approach is applied for an experimental example. There it is compared with a least-squares-error model including knowledge from first principle.
引用
收藏
页码:4261 / 4274
页数:14
相关论文
共 50 条
  • [41] Data-Driven Identification of Nonlinear Power System Dynamics Using Output-Only Measurements
    Sharma, Pranav
    Ajjarapu, Venkataramana
    Vaidya, Umesh
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) : 3458 - 3468
  • [42] Data-Driven Reachability Analysis From Noisy Data
    Alanwar, Amr
    Koch, Anne
    Allgoewer, Frank
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3054 - 3069
  • [43] Data-Driven Passivity Analysis and Fault Detection Using Reinforcement Learning
    Ma, Haoran
    Zhao, Zhengen
    Li, Zhuyuan
    Yang, Ying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, : 6521 - 6531
  • [44] Data-Driven Policy Iteration for Nonlinear Optimal Control Problems
    Possieri, Corrado
    Sassano, Mario
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7365 - 7376
  • [45] Data-Driven Tracking for Nonlinear Systems: A Multi-Step Error Feedback Model-Free Adaptive Control Method
    Wang, Fuyong
    Chuai, Ce
    Liu, Zhongxin
    Chen, Fei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (05) : 2714 - 2718
  • [46] Data-driven identification and control of nonlinear systems using multiple NARMA-L2 models
    Yang, Yue
    Xiang, Cheng
    Gao, Shuhua
    Lee, Tong Heng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (12) : 3806 - 3833
  • [47] An Interpretable Data-Driven Learning Approach for Nonlinear Aircraft Systems With Noisy Interference
    Cao, Rui
    Lu, Kelin
    Liu, Yanbin
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (01) : 182 - 194
  • [48] Data-Driven Iterative Learning Control of Nonlinear Systems by Adaptive Model Matching
    Lee, Yu-Hsiu
    Rai, Sandeep
    Tsao, Tsu-Chin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5626 - 5636
  • [49] Data-Driven Participation Factors for Nonlinear Systems Based on Koopman Mode Decomposition
    Netto, Marcos
    Susuki, Yoshihiko
    Mili, Lamine
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 198 - 203
  • [50] Direct data-driven state-feedback control of general nonlinear systems
    Verhoek, Chris
    Koelewijn, Patrick J. W.
    Haesaert, Sofie
    Toth, Roland
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3688 - 3693