Data-Driven System Analysis of Nonlinear Systems Using Polynomial Approximation

被引:7
|
作者
Martin, Tim [1 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70569 Stuttgart, Germany
关键词
Noise measurement; System dynamics; Nonlinear dynamical systems; Trajectory; Linear matrix inequalities; Control theory; Upper bound; Data-driven system analysis; dissipativity; nonlinear systems; polynomial approximation; VERIFICATION;
D O I
10.1109/TAC.2023.3321212
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of data-driven control of nonlinear systems, many approaches lack of rigorous guarantees, call for nonconvex optimization, or require knowledge of a function basis containing the system dynamics. To tackle these drawbacks, we establish a polynomial representation of nonlinear functions based on a polynomial sector by Taylor's theorem and a set-membership for Taylor polynomials. The latter is obtained from finite noisy samples. By incorporating the measurement noise, the error of polynomial approximation, and potentially given prior knowledge on the structure of the system dynamics, we achieve computationally tractable conditions by sum of squares relaxation to verify dissipativity of nonlinear dynamical systems with rigorous guarantees. The framework is extended by combining multiple Taylor polynomial approximations, which yields a less conservative piecewise polynomial system representation. The proposed approach is applied for an experimental example. There it is compared with a least-squares-error model including knowledge from first principle.
引用
收藏
页码:4261 / 4274
页数:14
相关论文
共 50 条
  • [1] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [2] Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics
    Straesser, Robin
    Berberich, Julian
    Allgoewer, Frank
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4344 - 4351
  • [3] Data-Driven Observability Analysis for Nonlinear Stochastic Systems
    Massiani, Pierre-Francois
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Di Meglio, Florent
    Trimpe, Sebastian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4042 - 4049
  • [4] Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey
    Martin, Tim
    Schoen, Thomas B.
    Allgoewer, Frank
    ANNUAL REVIEWS IN CONTROL, 2023, 56
  • [5] Data-driven Predictive Control for a Class of Nonlinear Systems with Polynomial Terms
    Azarbahram, Ali
    Al Khatib, Mohammad
    Mishra, Vikas Kumar
    Bajcinca, Naim
    IFAC PAPERSONLINE, 2024, 58 (21): : 226 - 231
  • [6] Data-Driven Saturated State Feedback Design for Polynomial Systems Using Noisy Data
    Madeira, Diego de S.
    Correia, Wilkley B.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) : 7932 - 7939
  • [7] Online Data-Driven Control of Nonlinear Systems Using Semidefinite Programming
    Bozza, Augusto
    Martin, Tim
    Cavone, Graziana
    Carli, Raffaele
    Dotoli, Mariagrazia
    Allgoewer, Frank
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3189 - 3194
  • [8] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [9] Data-Driven Inference on Optimal Input-Output Properties of Polynomial Systems With Focus on Nonlinearity Measures
    Martin, Tim
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2832 - 2847
  • [10] Orthogonal Polynomial Bases for Data-Driven Analysis and Control of Continuous-Time Systems
    Rapisarda, P.
    van Waarde, Henk J.
    Camlibel, M. K.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4307 - 4319