Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices

被引:8
作者
Li, Xiangke [1 ]
Wang, Meng [1 ]
Davis, Thomas P. [1 ]
Zhang, Liwen [1 ]
Qiao, Ruirui [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
来源
BIOSENSORS-BASEL | 2024年 / 14卷 / 06期
基金
英国医学研究理事会;
关键词
microfluidics; 3D printing; tissue culture; IN-VITRO MODEL; ON-A-CHIP; CELL-CULTURES; BARRIER; PLATFORM; DESIGN; SYSTEM;
D O I
10.3390/bios14060301
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Three-dimensional (3D) printing presents a compelling alternative for fabricating microfluidic devices, circumventing certain limitations associated with traditional soft lithography methods. Microfluidics play a crucial role in the biomedical sciences, particularly in the creation of tissue spheroids and pharmaceutical research. Among the various 3D printing techniques, light-driven methods such as stereolithography (SLA), digital light processing (DLP), and photopolymer inkjet printing have gained prominence in microfluidics due to their rapid prototyping capabilities, high-resolution printing, and low processing temperatures. This review offers a comprehensive overview of light-driven 3D printing techniques used in the fabrication of advanced microfluidic devices. It explores biomedical applications for 3D-printed microfluidics and provides insights into their potential impact and functionality within the biomedical field. We further summarize three light-driven 3D printing strategies for producing biomedical microfluidic systems: direct construction of microfluidic devices for cell culture, PDMS-based microfluidic devices for tissue engineering, and a modular SLA-printed microfluidic chip to co-culture and monitor cells.
引用
收藏
页数:15
相关论文
共 98 条
[1]   A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength [J].
Afshar, Mohammad E. ;
Abraha, Haben Y. ;
Bakooshli, Mohsen A. ;
Davoudi, Sadegh ;
Thavandiran, Nimalan ;
Tung, Kayee ;
Ahn, Henry ;
Ginsberg, Howard J. ;
Zandstra, Peter W. ;
Gilbert, Penney M. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury [J].
Agrawal, Gaurav ;
Aung, Aereas ;
Varghese, Shyni .
LAB ON A CHIP, 2017, 17 (20) :3447-3461
[3]   3D-printed microfluidic devices [J].
Amin, Reza ;
Knowlton, Stephanie ;
Hart, Alexander ;
Yenilmez, Bekir ;
Ghaderinezhad, Fariba ;
Katebifar, Sara ;
Messina, Michael ;
Khademhosseini, Ali ;
Tasoglu, Savas .
BIOFABRICATION, 2016, 8 (02)
[4]   Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications [J].
Arefin, Amit M. E. ;
Khatri, Nava Raj ;
Kulkarni, Nitin ;
Egan, Paul F. .
POLYMERS, 2021, 13 (09)
[5]   Polydimethylsiloxane Composites Characterization and Its Applications: A Review [J].
Ariati, Ronaldo ;
Sales, Flaminio ;
Souza, Andrews ;
Lima, Rui A. ;
Ribeiro, Joao .
POLYMERS, 2021, 13 (23)
[6]   An outlook on microfluidics: the promise and the challenge [J].
Battat, Sarah ;
Weitz, David A. ;
Whitesides, George M. .
LAB ON A CHIP, 2022, 22 (03) :530-536
[7]   Monolithic, 3D-Printed Microfluidic Platform for Recapitulation of Dynamic Tumor Microenvironments [J].
Beckwith, Ashley L. ;
Borenstein, Jeffrey T. ;
Velasquez-Garcia, Luis Fernando .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2018, 27 (06) :1009-1022
[8]   Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans [J].
Bhushan, Abhinav ;
Senutovitch, Nina ;
Bale, Shyam S. ;
McCarty, William J. ;
Hegde, Manjunath ;
Jindal, Rohit ;
Golberg, Inna ;
Usta, O. Berk ;
Yarmush, Martin L. ;
Vernetti, Lawrence ;
Gough, Albert ;
Bakan, Ahmet ;
Shun, Tong Ying ;
DeBiasio, Richard ;
Taylor, D. Lansing .
STEM CELL RESEARCH & THERAPY, 2013, 4
[9]   Engineered skeletal muscle tissue networks with controllable architecture [J].
Bian, Weining ;
Bursac, Nenad .
BIOMATERIALS, 2009, 30 (07) :1401-1412
[10]   Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB) [J].
Booth, Ross ;
Kim, Hanseup .
LAB ON A CHIP, 2012, 12 (10) :1784-1792