Direct numerical simulation of three-dimensional particle-laden thermal convection using the Lattice Boltzmann Method

被引:3
|
作者
Wu, Hongcheng [1 ]
Karzhaubayev, Kairzhan [1 ]
Shen, Jie [1 ]
Wang, Lian-Ping [1 ]
机构
[1] Southern Univ Sci & Technol, Ctr Complex Flows & Soft Matter Res, Guangdong Prov Key Lab Turbulence Res & Applicat, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Thermal convection; Particle-laden flow; Heat transfer; MPI; RAYLEIGH-BENARD CONVECTION; FICTITIOUS DOMAIN METHOD; HEAT-TRANSFER; PARTICULATE FLOWS; FLUID-FLOW; SUSPENSIONS; DYNAMICS; EQUATION;
D O I
10.1016/j.compfluid.2024.106268
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In thermal multiphase flows, the modulation in the heat transfer rate due to the presence of finite-size solid particles attract growing interest in recent years. This study focuses on developing a robust and efficient simulation method for particle-laden Rayleigh-B & eacute;nard convection. The present work utilizes the double distribution function-based thermal lattice-Boltzmann method (TLBM), which enables successful simulations of multiphase fluid-thermal interactions. The no -slip boundary of the moving solid particles is handled by the interpolated bounce-back scheme. Additionally, Galilean invariant momentum exchange and heat exchange approaches are employed for hydrodynamic force and heat transfer calculation at the solid boundaries. The accuracy of the current method is verified with several benchmark cases, including three-dimensional single-phase Rayleigh-B & eacute;nard convection, as well as the settling of hot and cold spherical particles in a threedimensional enclosure. Furthermore, we explore the modulation of Rayleigh-B & eacute;nard flows due to the presence of freely moving finite-size particles. The simulations are conducted on a distributed memory cluster with a 3D domain decomposition technique facilitated by the MPI library. A brief discussion on the parallel performance of the simulations is provided for both particle-laden and single-phase flow scenarios. Finally, the effects of finite-size solid particles on the overall heat transfer efficiency and modulation to the flow field in threedimensional particle-laden turbulent Rayleigh-B & eacute;nard convection are discussed. The results show that addition of solid particles results in a moderate increase in the overall Nusselt number, and this enhancement is mainly due to the increased heat flux transported by the particles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method
    Lu Yu-Hua
    Zhan Jie-Min
    ACTA PHYSICA SINICA, 2006, 55 (09) : 4774 - 4782
  • [2] A three-dimensional fictitious domain method for direct numerical simulations of particle-laden flows with heat transfer
    Fan, Peifei
    Lin, Zhaowu
    Xu, Jian
    Yu, Zhaosheng
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [3] Lattice Boltzmann simulation of particle-laden turbulent channel flow
    Wang, Lian-Ping
    Peng, Cheng
    Guo, Zhaoli
    Yu, Zhaosheng
    COMPUTERS & FLUIDS, 2016, 124 : 226 - 236
  • [4] The simulation of turbulent particle-laden channel flow by the Lattice Boltzmann method
    Banari, Amir
    Mauzole, Yackar
    Hara, Tetsu
    Grilli, Stephan T.
    Janssen, Christian F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 79 (10) : 491 - 513
  • [5] Three-dimensional numerical simulation of nucleate boiling bubble by lattice Boltzmann method
    Sun, Tao
    Li, Weizhong
    COMPUTERS & FLUIDS, 2013, 88 : 400 - 409
  • [6] Three-dimensional cavitation simulation using lattice Boltzmann method
    Zhang Xin-Ming
    Zhou Chao-Ying
    Shams, Islam
    Liu Jia-Qi
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8406 - 8414
  • [7] Direct numerical simulations of particle sedimentation with heat transfer using the Lattice Boltzmann method
    Yang, Bo
    Chen, Sheng
    Liu, Kai
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 419 - 437
  • [8] Lattice Boltzmann simulation of particle-laden flows using an improved curved boundary condition
    Liu, Shasha
    Zhou, Taotao
    Tao, Shi
    Wu, Zhibin
    Yang, Guang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (06):
  • [9] Hybrid Lattice Boltzmann Simulation of Three-Dimensional Natural Convection
    Nee, Alexander
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2021, 50 (04) : 280 - 296
  • [10] A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method
    Geneva, Nicholas
    Peng, Cheng
    Li, Xiaoming
    Wang, Lian-Ping
    PARALLEL COMPUTING, 2017, 67 : 20 - 37