Attitude takeover control of spacecraft based on neural network predefined-time extended state observer

被引:1
作者
Shi, Mingyue [1 ]
Wu, Baolin [1 ]
Bernelli-Zazzera, Franco [2 ]
机构
[1] Harbin Inst Technol, Res Ctr Satellite Technol, Harbin 150080, Peoples R China
[2] Politecn Milan, Dept Aerosp Engn, Milan, Italy
基金
中国国家自然科学基金;
关键词
actuator installation deviation; attitude takeover control; neural network; predefined-time observer; unmeasurable angular velocity; RIGID SPACECRAFT; FEEDBACK; DESIGN;
D O I
10.1002/rnc.7493
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces the problem of predefined-time attitude takeover control for spacecraft. A novel radial basis function neural network predefined-time extended state observer is presented, which facilitates estimation of external disturbance, unmeasurable angular velocity, and actuator installation deviation within a predefined-time. A quantizer is then employed to quantize control input signal in controller-to-actuator side to mitigate communication pressure. Thereafter, a novel predefined-time attitude controller is proposed to ensure system states converge within a predefined-time. Finally, the effectiveness of the proposed control scheme is substantiated via numerical simulation.
引用
收藏
页码:9814 / 9836
页数:23
相关论文
共 43 条
[1]  
Barnhart D., 2013, AIAA SPACE 2013 C EX, P5341
[2]   Neural-Network-Based Optimal Attitude Control Using Four Impulsive Thrusters [J].
Biggs, James D. ;
Fournier, Hugo .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2020, 43 (02) :299-309
[3]  
Chang HT, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P3069, DOI 10.1109/IROS.2016.7759475
[4]   Adaptive Neural Network-Based Observer Design for Switched Systems With Quantized Measurements [J].
Chen, Liheng ;
Zhu, Yanzheng ;
Ahn, Choon Ki .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) :5897-5910
[5]   Sliding mode control using modified Rodrigues parameters [J].
Crassidis, JL ;
Markley, FL .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (06) :1381-1383
[6]   Velocity-Observer-Based Distributed Finite-Time Attitude Tracking Control for Multiple Uncertain Rigid Spacecraft [J].
Cui, Bing ;
Xia, Yuanqing ;
Liu, Kun ;
Wang, Yujuan ;
Zhai, Di-Hua .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2509-2519
[7]   Prescribed-time ESO-based prescribed-time control and its application to partial IGC design [J].
Cui, Lei ;
Jin, Nan .
NONLINEAR DYNAMICS, 2021, 106 (01) :491-508
[8]   A class of predefined-time stable dynamical systems [J].
Diego Sanchez-Torres, Juan ;
Gomez-Gutierrez, David ;
Lopez, Esteban ;
Loukianov, Alexander G. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 :1-29
[9]  
Fraguela L, 2012, IEEE DECIS CONTR P, P6615, DOI 10.1109/CDC.2012.6426147
[10]  
Haykin S., 1998, Neural networks: a comprehensive foundation