A Bi-CMOS electronic photonic integrated circuit quantum light detector
被引:4
|
作者:
Tasker, Joel F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, EnglandUniv Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, England
Tasker, Joel F.
[1
]
Frazer, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, EnglandUniv Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, England
Frazer, Jonathan
[1
]
Ferranti, Giacomo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, EnglandUniv Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, England
Ferranti, Giacomo
[1
]
Matthews, Jonathan C. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, EnglandUniv Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, England
Matthews, Jonathan C. F.
[1
]
机构:
[1] Univ Bristol, H H Wills Phys Lab, Quantum Engn Technol Labs, Bristol BS8 1FD, England
来源:
SCIENCE ADVANCES
|
2024年
/
10卷
/
20期
基金:
欧洲研究理事会;
英国工程与自然科学研究理事会;
关键词:
GENERATION;
D O I:
10.1126/sciadv.adk6890
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Complimentary metal-oxide semiconductor (CMOS) integration of quantum technology provides a route to manufacture at volume, simplify assembly, reduce footprint, and increase performance. Quantum noise-limited homodyne detectors have applications across quantum technologies, and they comprise photonics and electronics. Here, we report a quantum noise-limited monolithic electronic-photonic integrated homodyne detector, with a footprint of 80 micrometers by 220 micrometers, fabricated in a 250-nanometer lithography bipolar CMOS process. We measure a 15.3-gigahertz 3-decibel bandwidth with a maximum shot noise clearance of 12 decibels and shot noise clearance out to 26.5 gigahertz, when measured with a 9-decibel-milliwatt power local oscillator. This performance is enabled by monolithic electronic-photonic integration, which goes below the capacitance limits of devices made up of separate integrated chips or discrete components. It exceeds the bandwidth of quantum detectors with macroscopic electronic interconnects, including wire and flip chip bonding. This demonstrates electronic-photonic integration enhancing quantum photonic device performance.