Dissecting AI-based mutation prediction in lung adenocarcinoma: A comprehensive real-world study

被引:2
作者
Dernbach, Gabriel [1 ,2 ,3 ]
Kazdal, Daniel [4 ,14 ,15 ]
Ruff, Lukas [3 ]
Alber, Maximilian [1 ,3 ]
Romanovsky, Eva [4 ]
Schallenberg, Simon [1 ]
Christopoulos, Petros [6 ,7 ,14 ,15 ]
Weis, Cleo-Aron [4 ]
Muley, Thomas [5 ,14 ,15 ]
Schneider, Marc A. [5 ,14 ,15 ]
Schirmacher, Peter [4 ]
Thomas, Michael [6 ,7 ,14 ,15 ]
Mueller, Klaus-Robert [2 ,9 ,10 ,11 ,12 ]
Budczies, Jan [4 ,8 ]
Stenzinger, Albrecht [4 ,8 ,14 ,15 ]
Klauschen, Frederick [1 ,2 ,12 ,13 ]
机构
[1] Charite, Inst Pathol, Berlin, Germany
[2] BIFOLD, Berlin, Germany
[3] Aignostics GmbH, Berlin, Germany
[4] Univ Hosp Heidelberg, Inst Pathol, Heidelberg, Germany
[5] Thoraxklin Heidelberg Univ Hosp, Translat Res Unit, D-69126 Heidelberg, Germany
[6] Heidelberg Univ Hosp, Dept Thorac Oncol, Thoraxklin, D-69126 Heidelberg, Germany
[7] Heidelberg Univ Hosp, Natl Ctr Tumour Dis NCT, D-69126 Heidelberg, Germany
[8] German Canc Res Ctr DKTK DKFZ, German Canc Consortium, Heidelberg, Germany
[9] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[10] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[11] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[12] German Canc Res Ctr DKTK DKFZ, German Canc Consortium, Munich Partner Site, Heidelberg, Germany
[13] LMU Munchen, Inst Pathol, Munich, Germany
[14] Translat Lung Res Ctr Heidelberg TLRC H, D-69120 Heidelberg, Germany
[15] German Ctr Lung Res DZL, D-69120 Heidelberg, Germany
关键词
NSCLC; AI; Therapy; Prediction;
D O I
10.1016/j.ejca.2024.114292
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Molecular profiling of lung cancer is essential to identify genetic alterations that predict response to targeted therapy. While deep learning shows promise for predicting oncogenic mutations from whole tissue images, existing studies often face challenges such as limited sample sizes, a focus on earlier stage patients, and insufficient analysis of robustness and generalizability. Methods: This retrospective study evaluates factors influencing mutation prediction accuracy using the large Heidelberg Lung Adenocarcinoma Cohort (HLCC), a cohort of 2356 late-stage FFPE samples. Validation is performed in the publicly available TCGA-LUAD cohort. Results: Models trained on the larger HLCC cohort generalized well to the TCGA dataset for mutations in EGFR (AUC 0.76), STK11 (AUC 0.71) and TP53 (AUC 0.75), in line with the hypothesis that larger cohort sizes improve model robustness. Variation in performance due to pre-processing and modeling choices, such as mutation variant calling, affected EGFR prediction accuracy by up to 7 %. Discussion: Model explanations suggest that acinar and papillary growth patterns are critical for the detection of EGFR mutations, whereas solid growth patterns and large nuclei are indicative of TP53 mutations. These findings highlight the importance of specific morphological features in mutation detection and the potential of deep learning models to improve mutation prediction accuracy. Conclusion: Although deep learning models trained on larger cohorts show improved robustness and generalizability in predicting oncogenic mutations, they cannot replace comprehensive molecular profiling. However, they may support patient pre-selection for clinical trials and deepen the insight in genotype-phenotype relationships.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] [Anonymous], ARTIFICIAL INTELLIGE
  • [2] The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website
    Bamford, S
    Dawson, E
    Forbes, S
    Clements, J
    Pettett, R
    Dogan, A
    Flanagan, A
    Teague, J
    Futreal, PA
    Stratton, MR
    Wooster, R
    [J]. BRITISH JOURNAL OF CANCER, 2004, 91 (02) : 355 - 358
  • [3] Morphological and molecular breast cancer profiling through explainable machine learning
    Binder, Alexander
    Bockmayr, Michael
    Hagele, Miriam
    Wienert, Stephan
    Heim, Daniel
    Hellweg, Katharina
    Ishii, Masaru
    Stenzinger, Albrecht
    Hocke, Andreas
    Denkert, Carsten
    Mueller, Klaus-Robert
    Klauschen, Frederick
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (04) : 355 - 366
  • [4] Bischoff P, 2023, J Thorac Oncol Publ Int Assoc Study Lung Cancer
  • [5] Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer
    Brockmoeller, Scarlet
    Echle, Amelie
    Laleh, Narmin Ghaffari
    Eiholm, Susanne
    Malmstrom, Marie Louise
    Kuhlmann, Tine Plato
    Levic, Katarina
    Grabsch, Heike Irmgard
    West, Nicholas P.
    Saldanha, Oliver Lester
    Kouvidi, Katerina
    Bono, Aurora
    Heij, Lara R.
    Brinker, Titus J.
    Gogenur, Ismayil
    Quirke, Philip
    Kather, Jakob Nikolas
    [J]. JOURNAL OF PATHOLOGY, 2022, 256 (03) : 269 - 281
  • [6] Campanella G., 2022, PREPRINT, DOI DOI 10.48550/ARXIV.2206.10573
  • [7] Chakravarty Debyani, 2017, JCO Precis Oncol, V2017, DOI 10.1200/PO.17.00011
  • [8] Chen JY, 2020, Arxiv, DOI arXiv:2001.10155
  • [9] Towards a general-purpose foundation model for computational pathology
    Chen, Richard J.
    Ding, Tong
    Lu, Ming Y.
    Williamson, Drew F. K.
    Jaume, Guillaume
    Song, Andrew H.
    Chen, Bowen
    Zhang, Andrew
    Shao, Daniel
    Shaban, Muhammad
    Williams, Mane
    Oldenburg, Lukas
    Weishaupt, Luca L.
    Wang, Judy J.
    Vaidya, Anurag
    Le, Long Phi
    Gerber, Georg
    Sahai, Sharifa
    Williams, Walt
    Mahmood, Faisal
    [J]. NATURE MEDICINE, 2024, 30 (03) : 850 - 862
  • [10] Chen XL, 2020, Arxiv, DOI arXiv:2003.04297