Bucketized Active Sampling for learning ACOPF

被引:1
作者
Klamkin, Michael [1 ]
Tanneau, Mathieu [1 ]
Mak, Terrence W. K. [1 ]
Van Hentenryck, Pascal [1 ]
机构
[1] Georgia Inst Technol, Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
ACOPF; Machine learning; Active learning; OPTIMAL POWER-FLOW;
D O I
10.1016/j.epsr.2024.110697
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers optimization proxies for Optimal Power Flow (OPF), i.e., machine-learning models that approximate the input/output relationship of OPF. Recent work has focused on showing that such proxies can be of high fidelity. However, their training requires significant data, each instance necessitating the (offline) solving of an OPF. To meet the requirements of market-clearing applications, this paper proposes Bucketized Active Sampling ( BAS ), a novel active learning framework that aims at training the best possible OPF proxy within a time limit. BAS partitions the input domain into buckets and uses an acquisition function to determine where to sample next. By applying the same partitioning to the validation set, BAS leverages labeled validation samples in the selection of unlabeled samples. BAS also relies on an adaptive learning rate that increases and decreases over time. Experimental results demonstrate the benefits of BAS .
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Angluin D., 1988, Machine Learning, V2, P319, DOI 10.1007/BF00116828
  • [2] Ash J.T., 2020, 7 INT C LEARN REPR I
  • [3] Babaeinejadsarookolaee S., 2019, The power grid library for benchmarking AC optimal power flow algorithms
  • [4] Baker K., 2020, WORKSH MACH LEARN EN
  • [5] Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization
    Biegler, L. T.
    Zavala, V. M.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (03) : 575 - 582
  • [6] Maximizing Expected Model Change for Active Learning in Regression
    Cai, Wenbin
    Zhang, Ya
    Zhou, Jun
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 51 - 60
  • [7] Canyasse R, 2017, 2017 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT)
  • [8] Learning optimization proxies for large-scale Security-Constrained Economic
    Chen, Wenbo
    Park, Seonho
    Tanneau, Mathieu
    Van Hentenryck, Pascal
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [9] Active Learning for Deep Object Detection via Probabilistic Modeling
    Choi, Jiwoong
    Elezi, Ismail
    Lee, Hyuk-Jae
    Farabet, Clement
    Alvarez, Jose M.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10244 - 10253
  • [10] Coffrin C, 2018, 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC)