Digital image analysis of Ki67 hotspot detection and index counting in gastroenteropancreatic neuroendocrine neoplasms

被引:1
|
作者
Saetiew, Kritsanu [1 ,2 ]
Angkathunyakul, Napat [2 ]
Hunnangkul, Saowalak [3 ]
Pongpaibul, Ananya [2 ]
机构
[1] Srinakharinwirot Univ, Panyananthaphikkhu Chonprathan Med Ctr, Dept Anat Pathol, Bangkok, Thailand
[2] Mahidol Univ, Siriraj Hosp, Fac Med, Dept Pathol, 2 Wanglang Rd, Bangkok 10700, Thailand
[3] Mahidol Univ, Siriraj Hosp, Fac Med, Bangkok, Thailand
关键词
Ki-67 proliferative index; Neuroendocrine tumor; Gastrointestinal neuroendocrine neoplasms; Hotspot selection; Gradient map visualization; Digital image analysis; QUANTIFICATION; GUIDELINES; TUMORS;
D O I
10.1016/j.anndiagpath.2024.152295
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The Ki-67 proliferative index plays a pivotal role in the subclassification of neuroendocrine neoplasm (NEN) according to the WHO Classification of Digestive System Tumors (5th edition), which designates neuroendocrine tumor (NET) grades 1, 2, and 3 for Ki-67 proliferative index of <3 %, 3-20 %, and >20 %, respectively. Proliferative index calculation must be performed in the hotspot, traditionally selected by visual scanning at low-power magnification. Recently, gradient map visualization has emerged as a tool for various purposes, including hotspot selection. This study includes 97 cases of gastrointestinal neuroendocrine neoplasms, with hotspots selected by bare eye and gradient map visualization (GM). Each hotspot was analyzed using three methods: eye estimation (EE), digital image analysis (DIA), and manual counting. Of the NENs studied, 91 % were NETs (26 % for G1, 55 % for G2, and 10 % for G3). Only 9 cases were neuroendocrine carcinoma (NEC). Between two hotspot selection methods, GM resulted in a higher grade in 14.77 % of cases, primarily upgrading from NET G1 to G2. Among the counting methods, DIA demonstrated substantial agreement with manual counting, both for pathologist and resident. Grading by other methods tended to result in a higher grade than MC (26.99 % with EE and 8.52 % with DIA). Given its clinical and statistical significance, this study advocates for the application of GM in hotspot selection to identify higher-grade tumors. Furthermore, DIA provides accurate grading, offering time efficiency over MC.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Capecitabine plus temozolomide in patients with grade 3 unresectable or metastatic gastroenteropancreatic neuroendocrine neoplasms with Ki-67 index &lt;55%: single-arm phase II study
    Jeong, H.
    Shin, J.
    Jeong, J. H.
    Kim, K-P
    Hong, S-M
    Kim, Y-, I
    Ryu, J-S
    Ryoo, B-Y
    Yoo, C.
    ESMO OPEN, 2021, 6 (03)
  • [22] A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue
    Arvydas Laurinavicius
    Benoit Plancoulaine
    Aida Laurinaviciene
    Paulette Herlin
    Raimundas Meskauskas
    Indra Baltrusaityte
    Justinas Besusparis
    Darius Dasevicius
    Nicolas Elie
    Yasir Iqbal
    Catherine Bor
    Ian O Ellis
    Breast Cancer Research, 16
  • [23] Evaluation of the concordance between the stage of the disease and Ki-67 proliferation index in gastroenteropancreatic neuroendocrine tumors
    Ozaslan, Ersin
    Demir, Sinan
    Karaca, Halit
    Guven, Kadri
    EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2016, 28 (07) : 836 - 841
  • [24] Ki-67 proliferation index in neuroendocrine tumors: Can augmented reality microscopy with image analysis improve scoring?
    Satturwar, Swati P.
    Pantanowitz, Joshua L.
    Manko, Christopher D.
    Seigh, Lindsey
    Monaco, Sara E.
    Pantanowitz, Liron X.
    CANCER CYTOPATHOLOGY, 2020, 128 (08) : 535 - 544
  • [25] ki67 nuclei detection and ki67-index estimation: a novel automatic approach based on human vision modeling
    Barricelli, Barbara Rita
    Casiraghi, Elena
    Gliozzo, Jessica
    Huber, Veronica
    Leone, Biagio Eugenio
    Rizzi, Alessandro
    Vergani, Barbara
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [26] Automated Quantification of MART1-Verified Ki67 Indices by Digital Image Analysis in Melanocytic Lesions
    Nielsen, Patricia Switten
    Riber-Hansen, Rikke
    Raundahl, Jakob
    Steiniche, Torben
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2012, 136 (06) : 627 - 634
  • [27] Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study
    Acs, Balazs
    Pelekanou, Vasiliki
    Bai, Yalai
    Martinez-Morilla, Sandra
    Toki, Maria
    Leung, Samuel C. Y.
    Nielsen, Torsten O.
    Rimm, David L.
    LABORATORY INVESTIGATION, 2019, 99 (01) : 107 - 117
  • [28] Ki-67 assessment of pancreatic neuroendocrine neoplasms: Systematic review and meta-analysis of manual vs. digital pathology scoring
    Luchini, Claudio
    Pantanowitz, Liron
    Adsay, Volkan
    Asa, Sylvia L.
    Antonini, Pietro
    Girolami, Ilaria
    Veronese, Nicola
    Nottegar, Alessia
    Cingarlini, Sara
    Landoni, Luca
    Brosens, Lodewijk A.
    Verschuur, Anna V.
    Mattiolo, Paola
    Pea, Antonio
    Mafficini, Andrea
    Milella, Michele
    Niazi, Muhammad K.
    Gurcan, Metin N.
    Eccher, Albino
    Cree, Ian A.
    Scarpa, Aldo
    MODERN PATHOLOGY, 2022, 35 (06) : 712 - 720
  • [29] Perceptual clustering for automatic hotspot detection from Ki-67-stained neuroendocrine tumour images
    Niazi, M. Khalid Khan
    Yearsley, Martha M.
    Zhou, Xiaoping
    Frankel, Wendy L.
    Gurcan, Metin N.
    JOURNAL OF MICROSCOPY, 2014, 256 (03) : 213 - 225
  • [30] Somatostatin Analogues according to Ki67 index in neuroendocrine tumours: an observational retrospective-prospective analysis from real life
    Faggiano, Antongiulio
    Carratu, Anna Chiara
    Guadagno, Elia
    Tafuto, Salvatore
    Tatangelo, Fabiana
    Riccardi, Ferdinando
    Mocerino, Carmela
    Palmieri, Giovannella
    Damiano, Vincenzo
    Siciliano, Roberta
    Leo, Silvana
    Mauro, Annamaria
    Tozzi, Lucia Franca
    Battista, Claudia
    De Rosa, Gaetano
    Colao, Annamaria
    ONCOTARGET, 2016, 7 (05) : 5538 - 5547