Pseudo-spin switches and Aharonov-Bohm effect for topological boundary modes

被引:6
作者
Kawaguchi, Yuma [1 ]
Smirnova, Daria [2 ]
Komissarenko, Filipp [1 ]
Kiriushechkina, Svetlana [1 ]
Vakulenko, Anton [1 ]
Li, Mengyao [3 ]
Alu, Andrea [1 ,4 ,5 ]
Khanikaev, Alexander B. [1 ,5 ,6 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] Australian Natl Univ, Res Sch Phys, Canberra, ACT 2601, Australia
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[4] CUNY, Adv Sci Res Ctr, Photon Initiat, New York, NY 10031 USA
[5] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[6] CUNY, Dept Phys, New York, NY 10031 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 15期
基金
澳大利亚研究理事会;
关键词
Landforms; -; Photonics; Topology;
D O I
10.1126/sciadv.adn6095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure-pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms-the pseudo-spin-Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs.
引用
收藏
页数:9
相关论文
共 63 条
  • [31] Topological phases in acoustic and mechanical systems
    Ma, Guancong
    Xiao, Meng
    Chan, C. T.
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (04) : 281 - 294
  • [32] Nanomechanical topological insulators with an auxiliary orbital degree of freedom
    Ma, Jingwen
    Xi, Xiang
    Li, Yuan
    Sun, Xiankai
    [J]. NATURE NANOTECHNOLOGY, 2021, 16 (05) : 576 - 583
  • [33] All-Si valley-Hall photonic topological insulator
    Ma, Tzuhsuan
    Shvets, Gennady
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [34] Nonlinearity-induced photonic topological insulator
    Maczewsky, Lukas J.
    Heinrich, Matthias
    Kremer, Mark
    Ivanov, Sergey K.
    Ehrhardt, Max
    Martinez, Franklin
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Torner, Lluis
    Bauer, Dieter
    Szameit, Alexander
    [J]. SCIENCE, 2020, 370 (6517) : 701 - +
  • [35] Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
    Mei, Jun
    Chen, Zeguo
    Wu, Ying
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [36] A topological source of quantum light
    Mittal, Sunil
    Goldschmidt, Elizabeth A.
    Hafezi, Mohammad
    [J]. NATURE, 2018, 561 (7724) : 502 - +
  • [37] 2022 Roadmap on integrated quantum photonics
    Moody, Galan
    Sorger, Volker J.
    Blumenthal, Daniel J.
    Juodawlkis, Paul W.
    Loh, William
    Sorace-Agaskar, Cheryl
    Jones, Alex E.
    Balram, Krishna C.
    Matthews, Jonathan C. F.
    Laing, Anthony
    Davanco, Marcelo
    Chang, Lin
    Bowers, John E.
    Quack, Niels
    Galland, Christophe
    Aharonovich, Igor
    Wolff, Martin A.
    Schuck, Carsten
    Sinclair, Neil
    Loncar, Marko
    Komljenovic, Tin
    Weld, David
    Mookherjea, Shayan
    Buckley, Sonia
    Radulaski, Marina
    Reitzenstein, Stephan
    Pingault, Benjamin
    Machielse, Bartholomeus
    Mukhopadhyay, Debsuvra
    Akimov, Alexey
    Zheltikov, Aleksei
    Agarwal, Girish S.
    Srinivasan, Kartik
    Lu, Juanjuan
    Tang, Hong X.
    Jiang, Wentao
    McKenna, Timothy P.
    Safavi-Naeini, Amir H.
    Steinhauer, Stephan
    Elshaari, Ali W.
    Zwiller, Val
    Davids, Paul S.
    Martinez, Nicholas
    Gehl, Michael
    Chiaverini, John
    Mehta, Karan K.
    Romero, Jacquiline
    Lingaraju, Navin B.
    Weiner, Andrew M.
    Peace, Daniel
    [J]. JOURNAL OF PHYSICS-PHOTONICS, 2022, 4 (01):
  • [38] Polariton Z Topological Insulator
    Nalitov, A. V.
    Solnyshkov, D. D.
    Malpuech, G.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [39] Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators
    Ni, Xiang
    Purtseladze, David
    Smirnova, Daria A.
    Slobozhanyuk, Alexey
    Alu, Andrea
    Khanikaev, Alexander B.
    [J]. SCIENCE ADVANCES, 2018, 4 (05):
  • [40] Braiding photonic topological zero modes
    Noh, Jiho
    Schuster, Thomas
    Iadecola, Thomas
    Huang, Sheng
    Wang, Mohan
    Chen, Kevin P.
    Chamon, Claudio
    Rechtsman, Mikael C.
    [J]. NATURE PHYSICS, 2020, 16 (09) : 989 - +