Mean curvature flow solitons in warped products: nonexistence, rigidity and stability

被引:0
作者
de Lima, Henrique F. [1 ]
Santos, Marcio S. [2 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Riemannian warped products; Schwarzschild and Reissner-Nordstr & ouml; m spaces; Mean curvature flow solitons; Self-shrinkers; Self-expanders; Translating solitons; Entire graphs; Strong stability; COMPLETE VERTICAL GRAPHS; COMPLETE SELF-SHRINKERS; HYPERSURFACES; THEOREMS; UNIQUENESS; SURFACES; MANIFOLDS; INFINITY; UNICITY;
D O I
10.1007/s12215-024-01066-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several aspects of the geometry of m-dimensional mean curvature flow solitons immersed in a Riemannian warped product IxfMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times _{f}M<^>n$$\end{document} (m <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\le n$$\end{document}), with base I subset of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\subset {\mathbb {R}}$$\end{document}, fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} and warping function f is an element of C infinity(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C<^>\infty (I)$$\end{document}. In this context, we apply suitable maximum principles to guarantee that such a mean curvature flow soliton is a slice of the ambient space, as well as to obtain nonexistence results concerning these geometric objects. When m=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=n$$\end{document}, we investigate complete two-sided hypersurfaces and, in particular, entire graphs constructed over the fiber Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M<^>n$$\end{document} which are mean curvature flow solitons. Furthermore, we infer the stability of closed mean curvature flow solitons with respect to an appropriate stability operator. Applications to self-shrinkers and self-expanders in the Euclidean space and to mean curvature flow solitons in important ambient spaces, like the pseudo-hyperbolic, Schwarzschild and Reissner-Nordstr & ouml;m spaces, are also given.
引用
收藏
页码:2653 / 2688
页数:36
相关论文
共 54 条
  • [1] Alexandrov A. D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, 10.1007/BF02413056.2, DOI 10.1007/BF02413056.2, DOI 10.1007/BF02413056]
  • [2] Constant mean curvature hypersurfaces in warped product spaces
    Alias, Luis J.
    Dajczer, Marcos
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 511 - 526
  • [3] Alías LJ, 2006, COMMENT MATH HELV, V81, P653
  • [4] Stability of mean curvature flow solitons in warped product spaces
    Alias, Luis J.
    de Lira, Jorge H. S.
    Rigoli, Marco
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 287 - 309
  • [5] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Alias, Luis J.
    de Lira, Jorge H.
    Rigoli, Marco
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1466 - 1529
  • [6] Uniqueness of entire graphs in warped products
    Alias, Luis J.
    Gervasio Colares, A.
    de Lima, Henrique F.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 60 - 75
  • [7] [Anonymous], 1984, General Relativity, DOI [DOI 10.7208/CHICAGO/9780226870373.001.0001, 10.7208/chicago/9780226870373.001.0001]
  • [8] On the rigidity of constant mean curvature complete vertical graphs in warped products
    Aquino, C. F.
    de Lima, H. F.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (04) : 590 - 596
  • [9] On the Unicity of Complete Hypersurfaces Immersed in a Semi-Riemannian Warped Product
    Aquino, C. P.
    de Lima, H. F.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 1126 - 1143
  • [10] SUBMANIFOLDS IMMERSED IN A WARPED PRODUCT: RIGIDITY AND NONEXISTENCE
    Araujo, Jogli G.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (02) : 811 - 821