Air pollution and mortality for cancer of the respiratory system in Italy: an explainable artificial intelligence approach

被引:0
|
作者
Romano, Donato [1 ,2 ]
Novielli, Pierfrancesco [1 ,2 ]
Cilli, Roberto [2 ,3 ]
Amoroso, Nicola [2 ,4 ]
Monaco, Alfonso [2 ,3 ]
Bellotti, Roberto [2 ,3 ]
Tangaro, Sabina [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy
[3] M Merlin Univ Bari Aldo Moro, Dipartimento Interateneo Fis, Bari, Italy
[4] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Bari, Italy
关键词
explainable artificial intelligence; air pollution; lung cancer; respiratory disease; socio-economic indices; public health; LUNG-CANCER; MODEL; URBAN; NO2; OZONE; O-3;
D O I
10.3389/fpubh.2024.1344865
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Machine Learning and Explainable Artificial Intelligence Approach for Insurance Fraud Classification
    Khan, Zaid
    Olivia, Diana
    Shetty, Sucharita
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2025, 28 (75): : 140 - 169
  • [42] An explainable artificial intelligence approach to spatial navigation based on hippocampal circuitry
    Coppolino, Simone
    Migliore, Michele
    NEURAL NETWORKS, 2023, 163 : 97 - 107
  • [43] Explainable Artificial Intelligence to Detect Breast Cancer: A Qualitative Case-Based Visual Interpretability Approach
    Rodriguez-Sampaio, M.
    Rincon, M.
    Valladares-Rodriguez, S.
    Bachiller-Mayoral, M.
    ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 557 - 566
  • [44] Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques: An Explainable Artificial Intelligence Approach
    Raha, Avi Deb
    Dihan, Fatema Jannat
    Gain, Mrityunjoy
    Murad, Saydul Akbar
    Adhikary, Apurba
    Hossain, Md. Bipul
    Hassan, Md. Mehedi
    Al-Shehari, Taher
    Alsadhan, Nasser A.
    Kadrie, Mohammed
    Bairagi, Anupam Kumar
    Computers, Materials and Continua, 2024, 81 (03) : 4033 - 4048
  • [45] Greenness, air pollution, and mortality risk: A US cohort study of cancer patients and survivors
    Coleman, Carver J.
    Yeager, Ray A.
    Riggs, Daniel W.
    Coleman, Nathan C.
    Garcia, George R.
    Bhatnagar, Aruni
    Pope, C. Arden
    ENVIRONMENT INTERNATIONAL, 2021, 157
  • [46] A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence
    Amoroso, Nicola
    Pomarico, Domenico
    Fanizzi, Annarita
    Didonna, Vittorio
    Giotta, Francesco
    La Forgia, Daniele
    Latorre, Agnese
    Monaco, Alfonso
    Pantaleo, Ester
    Petruzzellis, Nicole
    Tamborra, Pasquale
    Zito, Alfredo
    Lorusso, Vito
    Bellotti, Roberto
    Massafra, Raffaella
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [47] A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer
    Haghighikian, Seyed Masoud
    Shirinzadeh-Dastgiri, Ahmad
    Vakili-Ojarood, Mohammad
    Naseri, Amirhosein
    Barahman, Maedeh
    Saberi, Ali
    Rahmani, Amirhossein
    Shiri, Amirmasoud
    Masoudi, Ali
    Aghasipour, Maryam
    Shahbazi, Amirhossein
    Ghelmani, Yaser
    Aghili, Kazem
    Neamatzadeh, Hossein
    INDIAN JOURNAL OF SURGICAL ONCOLOGY, 2025, 16 (01) : 257 - 278
  • [48] Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain
    Knapic, Samanta
    Malhi, Avleen
    Saluja, Rohit
    Framling, Kary
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2021, 3 (03): : 740 - 770
  • [49] Contribution of respiratory disease to nonrespiratory mortality associations with air pollution
    De Leon, SF
    Thurston, GD
    Ito, K
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2003, 167 (08) : 1117 - 1123
  • [50] Explainable artificial intelligence (XAI) for exploring spatial variability of lung and bronchus cancer (LBC) mortality rates in the contiguous USA
    Ahmed, Zia U.
    Sun, Kang
    Shelly, Michael
    Mu, Lina
    SCIENTIFIC REPORTS, 2021, 11 (01)